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An Acylatable Residue of Hedgehog Is Differentially
Required in Drosophila and Mouse
Limb Development
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The Drosophila Hedgehog protein and its vertebrate counterpart Sonic hedgehog are required for a wide variety of patterning
events throughout development. Hedgehog proteins are secreted from cells and undergo autocatalytic cleavage and
cholesterol modification to produce a mature signaling domain. This domain of Sonic hedgehog has recently been shown to
acquire an N-terminal acyl group in cell culture. We have investigated the in vivo role that such acylation might play in
appendage patterning in mouse and Drosophila; in both species Hedgehog proteins define a posterior domain of the limb or
wing. A mutant form of Sonic hedgehog that cannot undergo acylation retains significant ability to repattern the mouse
limb. However, the corresponding mutation in Drosophila Hedgehog renders it inactive in vivo, although it is normally
processed. Furthermore, overexpression of the mutant form has dominant negative effects on Hedgehog signaling. These
data suggest that the importance of the N-terminal cysteine of mature Hedgehog in patterning appendages differs between
species. © 2001 Academic Press
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INTRODUCTION

Analysis of developmental events in vertebrate and inver-
tebrate species has revealed a significant conservation of
many basic developmental mechanisms, as well as a num-
ber of differences in the details. The development of ap-
pendages from imaginal discs in Drosophila shares many
common features with vertebrate limb development (Vogt
and Duboule, 1999). The posterior compartment of the
Drosophila wing disc, defined by the presence of the tran-
scription factor Engrailed (En), expresses Hedgehog (Hh), a
secreted signaling protein. Hh acts directly to specify the
central region of the wing (Mullor et al., 1997; Strigini and
Cohen, 1997) and also stimulates cells just anterior to the
compartment boundary to express the TGF-b family mem-
er Decapentaplegic (Dpp; Basler and Struhl, 1994; Tabata
nd Kornberg, 1994). Dpp then acts as a long-range morpho-
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gen to pattern the entire wing (Lecuit et al., 1996; Nellen et
al., 1996). The posterior region of the vertebrate limb bud,
known as the zone of polarizing activity (ZPA), likewise
secretes the Hh homologue Sonic hedgehog (Shh), which
acts to pattern the limb along the anteroposterior axis
(Kraus et al., 2001; Riddle et al., 1993; Wang et al., 2000;
Yang et al., 1997). There is no evidence for a compartment
boundary anterior to the domain of Shh expression; how-
ever, Shh activates the expression of the Dpp homologues
bone morphogenetic protein 2 (BMP2) and BMP7, which
further contribute to limb patterning (Drossopoulou et al.,
2000; Duprez et al., 1996; Francis et al., 1994; Laufer et al.,
1994; Yang et al., 1997; Zhang et al., 2000; Zuniga et al.,
1999).

In addition to their functions in limb development,
proteins of the Hh family function as positional cues in a
wide variety of other developmental contexts. In Drosoph-
ila these include embryonic segmentation and the progres-
sive differentiation of photoreceptors in the eye disc (Ing-

ham, 1994). In vertebrates Shh is required for the patterned
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2 Lee et al.
specification of ventral cell fates in the neural tube and in
the adjacent somites (Chiang et al., 1996; Fan et al., 1995;
Roelink et al., 1995). All Hh family members are thought to
act by binding to homologues of the transmembrane protein
Patched (Ptc). In the absence of Hh binding, Ptc inactivates
the transmembrane protein Smoothened (Smo; Alcedo and
Noll, 1997; Chen and Struhl, 1998; Marigo et al., 1996;
Murone et al., 1999; Stone et al., 1996); this inhibition of
Smo is relieved by Hh binding to Ptc, allowing Smo to
transduce the Hh signal. This results in the production of
an active form of the transcription factor Cubitus interrup-
tus (Ci) or its homologues encoded by the vertebrate Gli
genes (Aza-Blanc et al., 1997; Chen et al., 1999a; Methot
and Basler, 1999; Ohlmeyer and Kalderon, 1998; Sasaki et
al., 1999; Wang et al., 2000).

Hh is initially translated as a 45-kDa preprotein with an
internal signal sequence near the N-terminus. In addition to
removal of this signal sequence, the full-length protein is
cleaved internally by the autoproteolytic activity of the
C-terminal domain, resulting in a mature N-terminal 19-
kDa ligand (Lee et al., 1994). As a result of the autocatalytic
mechanism, the mature protein acquires a cholesterol moi-
ety linked to the C-terminal amino acid (Porter et al., 1995,
1996a,b). The function of this modification may be to tether
Hh to the cell surface and thereby limit its diffusibility; a
form of Hh that lacks cholesterol shows increased diffus-
ibility and activity (Porter et al., 1996a). The Dispatched
protein, which has a sterol-sensing domain, is specifically
required to release cholesterol-modified Hh from cells
(Burke et al., 1999). In addition, Hh requires heparan sulfate
proteoglycan synthesis by the product of the tout velu gene
in order to move from cell to cell (Bellaiche et al., 1998; The
et al., 1999). Although Shh has an N-terminal, rather than
internal, signal sequence, it undergoes the same autopro-
teolytic cleavage as Drosophila Hh to produce a mature
N-terminal protein carrying a cholesterol moiety (Porter et
al., 1995, 1996b).

In addition to the cholesterol modification, human and
rat Shh proteins produced in tissue culture have a fatty acid
attached to cysteine-24, which is the N-terminal amino
acid of the mature signaling protein (Pepinsky et al., 1998).
Full-length human Shh has been shown to be modified by
the addition of palmitic acid, whereas the N-terminal
domain of rat Shh can be modified by any of several
different fatty acids (Pepinsky et al., 1998). Although the
thiol group of Cys-24 is essential for palmitoylation of
human Shh, palmitate is attached to the N-terminal
a-amino group rather than forming a thioester linkage
(Pepinsky et al., 1998). Acylation appears to be required to
otentiate human Shh activity on C3H10T1/2 cells (Pepin-
ky et al., 1998; Williams et al., 1999) as well as in some
ontexts in vivo (Kohtz et al., 2001). Unacylated Shh
roduced in Escherichia coli can induce the formation of
entral neuronal cell types in chick spinal cord and fore-
rain explants, but is much less active on mouse forebrain

xplants than acylated Shh produced in insect cells (Kohtz
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t al., 2001). Thus unacylated Shh appears to function as a
ypomorphic form of the protein in some contexts.
To test whether acylation is important for Hh signaling

n Drosophila or mouse appendage patterning, we have
onstructed forms of Drosophila Hh (C84S-Hh) and human
hh (C24S-Shh) that cannot be acylated because the cys-
eine to which the acyl group is normally attached has been
utated to a serine. In the mouse limb, C24S-Shh appears

o have reduced patterning activity compared to wild-type
hh. However, C84S-Hh has no detectable Hh activity in
rosophila and can interfere with the function of endoge-
ous Hh when expressed at high levels. This mutation does
ot appear to affect processing or secretion of the protein,
nd C24S-Shh and unacylated wild-type Shh have equiva-
ent activities on forebrain explants in vitro (Kohtz et al.,
001). Thus our results suggest that this cysteine residue is
equired throughout evolution, perhaps as a substrate for
cylation, although its impact on Hh signaling varies across
pecies.

MATERIALS AND METHODS

Retroviral Preparation and Injection

Shh and C24S-Shh sequences were inserted into a modified MLV
retroviral vector (CLE) immediately upstream of an IRES linked to
the placental alkaline phosphatase (PLAP) reporter gene to permit
detection of infected cells (Gaiano et al., 1999). The replication-
defective retroviral vectors were pseudotyped with the VSV-G
protein and injected into the amniotic sac at titers of 2–4 3 107

cfu/ml using ultrasound-guided imaging, as described (Gaiano et
al., 1999). Injections were performed at 8.5 to 9.5 dpc (days
postcoitum), just prior to initiation of fore- and hindlimb out-
growth, respectively (Gaiano et al., 1999; Turnbull et al., 1995).

Mouse Tissue Preparation and Analysis

Mouse embryos were delivered by caesarian dissection at 12.5 or
18.5 dpc and fixed in 4% paraformaldehyde overnight. After fixa-
tion, the embryos were washed in phosphate-buffered saline with
0.1% Tween 20. Endogenous alkaline phosphatase was inactivated
by heating for 20 min at 70°C. The embryos were then equilibrated
in NTMT buffer (0.1 M Tris, pH 9.5/0.05 M MgCl2/0.1 M NaCl/
0.05% levamisole/0.1% Tween 20) and subsequently stained for
alkaline phosphatase activity, representing viral gene expression
(Gaiano et al., 1999). Scattered clusters of reporter gene expressing
cells were detected in the presumptive skin. Subsequent RNA in
situ hybridization analysis using a Hoxd13 probe (Dolle et al.,
989) was performed on some of the embryonic limbs stained,
ssentially as described (Loomis et al., 1998). In these double-
abeling experiments, two different alkaline phosphatase substrates
ere used to produce distinctly colored reaction products. Alcian
lue and alizarin red stained skeletal preparations of 18.5 dpc
mbryos were performed as described (Lufkin et al., 1992).

Drosophila Genetics

Alleles and transgenic lines used were hhts2 (Ma et al., 1993),

hhAC (Lee et al., 1992), ptcs2 (Flybase), dpp-lacZ (Blackman et al.,

s of reproduction in any form reserved.
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3Importance of Shh C24 Is Not Conserved
1991), da-GAL4, ptc-GAL4 (Wodarz et al., 1995), omb-GAL4 (Le-
cuit et al., 1996), en-GAL4 (Flybase), and ey-GAL4 (Hazelett et al.,
1998). pUAS-hh was generated by cloning a KpnI/XbaI fragment
containing the entire coding region of hh into the pUAST vector.
The C84S mutation was made by site-directed mutagenesis using
an antisense oligonucleotide with the sequence 59-
CCAGGACCGGAGCTGTGAGCC-39 and the Sculptor kit (Amer-
sham). The wild-type TGC codon, which specifies cysteine, was
replaced by a TCC codon, which specifies serine. C84S-hh was then
inserted into pUAST using KpnI and XbaI. Both constructs were
confirmed by sequencing. Constructs were injected into white2

embryos using standard methods and several independent transfor-
mants for each construct were generated. All insertions used in this
study are on the third chromosome and were balanced over TM6B.

Immunohistochemistry and Microscopy

Imaginal discs were dissected in PBS and fixed on ice for 30 min
in 4% formaldehdye/13 PEM (0.1 M Pipes, pH 7.0/2 mM MgSO4/1

M EGTA). Primary antibody staining was done overnight at 4°C
n PBS/0.2% Triton X-100/10% normal donkey serum. Antibodies
ere used at the following dilutions: rabbit a-Nhh-1 (gift of T.

Tabata) was used at 1:2000, mouse a-Ptc (gift of I. Guerrero) was
sed at 1:200, rat a-Ci monoclonal 2A1 (Motzny and Holmgren,

1995; gift of R. Holmgren) was used at 1:1, and mouse a-En
onoclonal 4D9 (gift of S. DiNardo) was used at 1:1. Donkey

econdary antibodies conjugated to FITC or Texas red (Jackson
aboratories) were diluted 1:200 in PBS/0.2% Triton X-100/10%
ormal donkey serum and incubated 2 h at 4°C. Antibody labeling
as detected on a Leica DMRBE confocal microscope. LacZ activ-

ty was detected by X-gal staining. Adult wings were mounted in
anada balsam:methyl salicylate (2:1) and visualized using a Zeiss
xioplan microscope.

Western Blot Analysis

Flies carrying a da-GAL4 transgene were crossed to flies carrying
either UAS-hh or UAS-C84S-hh transgenes; da-GAL4 is expressed
ubiquitously in the embryo. Embryos were harvested at 2–8 h after
egg laying in PBS/0.2% Triton X-100 1 a protease inhibitor cocktail
(Boehringer-Mannheim No. 1836170). Embryos were pelleted and
resuspended in an equal volume of 23 Laemmli buffer 1 protease
nhibitors. The embryos were homogenized by repeated passes
ith a micropestle, followed by a 5-min incubation at 100°C,

ollowed by more passes with the pestle. Samples were stored at
20°C until use. Approximately 20 embryo equivalents per lane

FIG. 1. Limbs infected with Shh or C24S-Shh-expressing virus dis
alkaline phosphatase activity and (B, D, F) subsequent alcian blue
injected with (A, B) control and (C, D) Shh expressing- and (E, F) C
formed ectopic digit 1 is present in both the Shh and C24S
C24S-Shh-expressing limb (arrow). Although the degree of anterio
limbs injected with control virus. At 18.5 dpc, retroviral-mediated
initial infection. Retroviral alkaline phosphatase activity was mos
expression in the dermis (mesoderm-derived) was also observed (C
FIG. 2. Anterior Shh or C24S-Shh induces molecular and morpho
whole mounts of 12.5 dpc limbs infected with (A, B) control P

retroviruses. (C–H) Phenotypes ranging from (C, F) digit deviation (hitc

Copyright © 2001 by Academic Press. All right
were electrophoresed on a 12% acrylamide denaturing gel and
transferred overnight to nitrocellulose. Primary and secondary
antibody incubations were as previously described (Therond et al.,
996); rabbit a-Nhh-1 was diluted 1:5000.

Cuticle Preparations

Flies of the genotype hhts2; en-GAL4/SM6.TM6B were crossed to
flies of the genotype hhAC, UAS-(hh or C84S-hh)/TM6B or hhAC/

M6B. The crosses were kept at 29°C to inactivate the hhts2 allele.
Unhatched embryos were collected at 12–24 h after egg laying and
dechorionated in bleach. The cuticles were fixed for 60 min at 60°
in acetic acid:glycerol at 4:1 and mounted overnight at 60°C in
Hoyers:lactic acid:H2O, 2:1:1.

RESULTS

Acylation Is Not Essential for Shh to Induce
Polydactyly in Mouse Limbs

A mutant form of human Shh, which cannot be acylated
because cysteine-24 is changed to serine (C24S-Shh-N), is at
least 800-fold less active in inducing alkaline phosphatase
activity in C3H10T1/2 cells than wild-type acylated Shh-N
and can antagonize the effect of Shh-N on these cells
(Williams et al., 1999). In addition, C24S-Shh has much less
ability to ventralize the embryonic mouse forebrain than
acylated Shh does (Kohtz et al., 2001). To further evaluate
the impact of acylation on other aspects of Shh function
during mouse development, we used retroviral vectors to
misexpress full-length wild-type and C24S-Shh in develop-
ing limb buds. Shh and C24S-Shh sequences were inserted
immediately upstream of an internal ribosome entry site
(IRES) followed by a PLAP gene to allow easy detection of
infected cells.

Retroviral-mediated misexpression of wild-type Shh in
the early mouse limb bud resulted in polydactyly (Figs. 1C,
1D, and 2D) and/or proximal deviation of the anterior digits
(Fig. 2C) resembling the hand signal of a hitchhiker. A
strong correlation of such phenotypes with retroviral infec-
tion in the distal and anterior regions of the limb bud was
observed (Figs. 2C–2E). These results were consistent with
previous studies demonstrating digit duplication and al-

anterior polydactyly. (A, C, E) show whole-mount paws stained for
alizarin red stained skeletal preparations from 18.5 dpc embryos
hh expressing retroviruses between 8.5 and 9.5 dpc. A completely
-expressing limbs (1*) as well as a bifurcated digit 2 in the
plication was variable, such duplications were never observed in
e expression was still detectable in the skin, confirming adequate
uently noted in the epidermis (ectoderm-derived), but occasional
w).

al alterations at early stages of limb development. All panels show
-expressing, (C–E) Shh-expressing, or (F–H) Shh-C24S-expressing
play
and

24S-S
-Shh
r du
gen

t freq
, arro
logic
LAP
hhiker-like handplate) to (D, G) formation of extra anterior digits.
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(A, B) Control limbs expressing PLAP alone show no anterior plate abnormalities. (E, H) Anterior induction of the Shh downstream target
Hoxd13 in response to ectopic Shh/Shh-C24S expression. Viral expression was demonstrated by staining for PLAP activity (arrows, purple
in B and E and turquoise in H) prior to performing the RNA in situ hybridization for the Hoxd13 mRNA (blue in B and E and brown in H).

(B) Note that massive infection with control virus does not cause upregulation of Hoxd13 in the most anterior region of the hand plate.

Copyright © 2001 by Academic Press. All rights of reproduction in any form reserved.
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tered anterior–posterior patterning when ectopic Shh is
delivered to the anterior limb mesenchyme (Chen et al.,
1999b; Liu et al., 1998; Riddle et al., 1993; Yang et al., 1997)
and loss of anterior–posterior expansion of the handplate in
the absence of Shh (Kraus et al., 2001). In contrast, Shh
overexpression by cells in the posterior limb where Shh is
expressed endogenously or ectopic expression by cells in
more proximal limb domains had no apparent impact on
early limb patterning (Fig. 2C and data not shown). Thus, as
expected, the ability of Shh to influence limb development
was dependent on its location along the anterior–posterior
axis. The phenotypes, however, did not appear to require
mesenchymal expression of Shh. Indeed, since retroviral
injection after 9.0 dpc infects almost exclusively the surface
ectoderm, the ectopic anterior outgrowths were most fre-
quently induced by Shh-expressing cells located in close
proximity to or within the apical ectodermal ridge (AER), an
ectoderm-derived structure (Fig. 1).

Mutant C24S-Shh produced similar results in the limb
bud. Ectopic anterior expression of C24S-Shh in the ecto-
derm induced polydactyly (Figs. 1E, 1F, and 2G) and devia-
tion of the anterior digits (Fig. 2F). Also, similar to wild-type
Shh, ectopic proximal or posterior C24S-Shh had no overt

FIG. 3. Activity and processing of C84S-Hh. (A–D) show cut
AS-hh/en-GAL4. UAS-hh rescues the lack of endogenous hh ac

GAL4. C84S-Hh fails to rescue hh mutants, resulting in a severe
embryos expressing full-length wild-type Hh (1), C84S-Hh (2), or da
constructs express protein that is processed to the correct molecu
effects on limb patterning (data not shown). Morphological

Copyright © 2001 by Academic Press. All right
analysis of 327 infected limbs indicated that both acylated
and unacylated forms of Shh induced a similar spectrum of
phenotypes (Table 1), although C24S-Shh appeared less
active than wild type. In contrast to limbs infected with
Shh and C24S-Shh-containing vectors, limbs infected with
control retroviral vectors expressing only the PLAP reporter
gene did not develop the anterior handplate phenotypes
characteristic of Shh- and C24S-Shh-expressing limbs, even
when robust AP reporter expression was detected anteriorly
(Figs. 2A and 2B).

We also examined the effect of wild-type Shh and C24S-
Shh on a Shh target gene. We chose to look at Hoxd13,
which requires Shh signaling for expansion and robust
expression within the forming handplate (Kraus et al., 2001,
and references therein). We have further demonstrated that
Hoxd13 is strongly upregulated in Shh mutant limb buds
following infection with Shh-expressing virus and is there-
fore a useful readout of Shh activity (P. Kraus, unpublished
data). Hoxd13 is normally not expressed in the anterior-
most mesenchyme of 12.5 dpc limb buds. However, in
response to ectopic anterior expression of either Shh or
C24S-Shh but not of the PLAP reporter, Hoxd13 expression
was induced in the most anterior domain of the developing

of embryos grown at 29°C. (A) hhAC/hhts2. (B, C) hhAC/hhts2;
completely (B) or partially (C). (D) hhAC/hhts2; UAS-C84S-hh/en-

ent polarity phenotype. (E) Western blot of protein extracts from
4 alone (3) probed with a-Hh. Both the wild-type and the C84S-Hh
eight for mature Hh-N.
icles
tivity
segm
-GAL
handplate (Figs. 2E and 2H).
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6 Lee et al.
Mutation of the N-Terminal Cysteine of the
Signaling Domain of Drosophila Hedgehog
Abolishes Its Activity

In order to test whether acylation of the corresponding
cysteine of Drosophila Hh could affect the activity of the
protein, we constructed a mutant hh cDNA encoding serine
nstead of cysteine at position 84 (referred to hereafter as
84S-Hh). Cys-84 is the N-terminal residue of the mature
h protein, corresponding to Cys-24 in Shh, and is followed
y a conserved sequence of amino acids (Fietz et al., 1994).

FIG. 4. C84S-Hh dominantly represses the formation of Hh-depen
B) en-GAL4/UAS-hh. The L3–L4 intervein region is expanded. (C)
or absent. (D) ptc-GAL4/UAS-C84S-hh. L3 and L4 are fused proxi
L3–L4 intervein region is reduced or lost. (F) hhts2/1; en-GAL4/U
enhances the intervein loss phenotype (compare to E).

TABLE 1
Summary of Shh/C24S-Shh-Induced Limb Phenotypes

Transgene Extra digits Hitchhiker

PLAP total — —
C24S-Shh total 23 (19%) 6 (5%
Shh total 62 (31%) 17 (8%

Note. The percentages of each class of phenotype observed are des
deviations (hitchhiker-like digits) were observed only in experime
percentage of extra digits than did wild-type Shh, consistent with C
truncations, ranging from mild to almost complete loss of structure
limbs. Such phenotypes resembled the limb reduction defects note
(Firth, 1997) and were likely due to global physiological alteration

procedure itself (MacIntyre et al., 1995).

Copyright © 2001 by Academic Press. All right
e used the GAL4-UAS system (Brand and Perrimon, 1993)
o express wild-type and C84S-Hh in transgenic flies. To
est whether C84S-Hh could replace wild-type Hh, we
xpressed C84S-Hh in the normal Hh pattern, under the
ontrol of engrailed (en)-GAL4, in flies transheterozyogous
or null and temperature-sensitive alleles of hh. At the
estrictive temperature, embryos of the genotype hhts/hhAC

display a severe segment polarity phenotype in which the
naked cuticle is lost (Fig. 3A). When a wild-type Hh trans-
gene was expressed using en-GAL4 in hhts/hhAC embryos,

structures in the wing. All panels show adult wings. (A) Wild type.
GAL4/1; UAS-C84S-hh/1. The L3–L4 intervein region is reduced
y; the anterior crossvein is lost. (E) en-GAL4/UAS-C84S-hh. The
84S-hh, kept at 29°C. Reduction of endogenous Hh production

Phenotype

Extra 1 HH Truncated Total

— 2 (6%) 35
3 (2%) 5 (4%) 124

12 (6%) 11 (5%) 203

d for each experiment. Anterior polydactyly and anterior handplate
(Shh and C24S-Shh) limbs. In general, C24S-Shh induced a lower
Shh functioning as a hypomorphic signaling molecule. Rare distal
re observed in approximately 5% of both control and experimental
a small number of human fetuses after chorionic villous sampling
h as a transient bradycardia and hypoxia, caused by the injection
dent
omb-
mall
AS-C
(HH)

)
)

cribe
ntal
24S-

s, we
d in
s, suc
s of reproduction in any form reserved.
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FIG. 5. C84S-Hh represses the expression of Hh target genes in the wing imaginal disc. All panels show third instar wing disc pouches with
anterior to the left and dorsal up. (A, D, G, J, M) omb-GAL4/1; UAS-C84S-hh/1. (B, E, H, K, N) Wild-type expression patterns. (C, F, I, L,

) omb-GAL4/1; UAS-hh/1. (A–C) dpp-lacZ expression revealed by X-gal staining is shown in blue. Expression of the transgene (A, C) or
endogenous Hh (B) is revealed by Hh antibody staining (brown). (D–F) Ptc antibody staining. (G–I) Ci antibody staining. (J–L) En antibody
staining. (M–O) High magnification of the wing pouch stained for Ci (red) and En (green). En expression anterior to the AP compartment
boundary overlaps Ci (N, arrow); this overlap is lost when C84S-Hh is expressed (M, arrow). Late overexpression of Hh in the anterior

compartment induces en expression; En protein transcriptionally represses ci (I, L, O).

Copyright © 2001 by Academic Press. All rights of reproduction in any form reserved.
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most of the cuticles examined were wild type or showed a
mild segment polarity phenotype (Figs. 3B and 3C, Table 2).
Thus this en-GAL4 line can direct the production of suffi-
cient protein to rescue Hh signaling. In contrast, when
C84S-Hh was expressed in hhts/hhAC embryos, the mutant

FIG. 6. The dominant negative activity of C84S-Hh is nonautono
ith anterior to the left and dorsal up. (A–C) Act,CD2,GAL4, hs

FRT42.arm-lacZ. (G–I) omb-GAL4, hs-FLP122/1;FRT42.ptcs2/FRT
positively labeled by antibodies to b-galactosidase (green in A,C); P
enlargement of the region boxed in (A). (D–I) ptc clones are revealed
n E,F, H, I) is upregulated in the clones, even when C84S-Hh expre
G–I).

ABLE 2
ummary of Cuticle Rescue Experiment

Genotype Wild-type cuticle

n-Gal4; hhts2/SM6.TM6B
UAS-hh4j2, hhAC/TM6B 238
Percentage of total 87.2%

en-Gal4; hhts2/SM6.TM6B
UAS-C84S-HhD7, hhAC/TM6B 151
Percentage of total 67.7%

Note. Cuticles of all embryos in each cross were collected prior t
cuticles would be 25% in both experiments. The higher number obs

activity in some embryos. The “intermediate” class of cuticle phenoty

Copyright © 2001 by Academic Press. All right
embryos failed to hatch and showed a segment polarity
phenotype that was indistinguishable from the hhts/hhAC

phenotype in the absence of any rescuing construct (Fig. 3D,
Table 2). The lack of rescue by C84S-Hh was observed with
several independent UAS lines, all of which could strongly

s and requires Ptc. All panels show third instar wing disc pouches
22/1; UAS-C84S-hh/UAS-lacZ. (D–F) hs-FLP122/1; FRT42.ptcs2/

rm-lacZ; UAS-C84S-hh/1. (A–C) Clones expressing C84S-Hh are
rotein (red in B, C) is reduced near the clones (arrow in C). (C) An
oss of b-galactosidase staining (green in D, F, G, I); Ptc protein (red
n is driven by omb-Gal4 and downregulates Ptc outside the clones

hh null cuticle Intermediate Total

14 21 273
5.1% 7.7%

72 0 223
32.3% 0

ching, at 16 h after egg laying. The expected proportion of hh null
following C84S-Hh expression could be due to dominant negative
mou
-FLP1
42.a
tc p
by l
ssio
o hat
erved
pe is shown in Fig. 3C.
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9Importance of Shh C24 Is Not Conserved
express ectopic Hh detected by antibody staining (data not
shown).

The inability of C84S-Hh to rescue the hh mutant phe-
notype could be caused by an effect of the C84S mutation
on protein stability or processing. To test this, we per-
formed a Western blot analysis of protein extracts from
embryos overexpressing the C84S-Hh or wild-type Hh con-
structs under the control of the ubiquitous daughterless
(da)-GAL4 driver. Using a polyclonal antiserum against Hh
protein, we found that the abundance of the 19-kDa
N-terminal fragment of Hh was greatly increased in protein
extracts from embryos expressing either wild-type or C84S
Hh (Fig. 3E). The ratio of unprocessed to processed Hh
appeared the same in embryos overexpressing either wild-
type Hh or C84S-Hh. Thus the C84S mutation abolishes the
function of Hh without affecting its processing.

C84S-Hh Has a Dominant-Negative Effect on Hh
Signaling

To test whether any residual function of C84S-Hh could
be detected in a gain of function assay, we used a series of
GAL4 lines to express either C84S-Hh or wild-type Hh in a
variety of embryonic and larval tissues (see Materials and
Methods). While misexpression of wild-type Hh caused
clear patterning defects often leading to lethality, C84S-Hh
displayed no Hh gain of function activity in any of the
tissues we tested. We found that C84S-Hh misexpression
caused a visible phenotype only in the developing wing and
the ocelli (Fig. 4 and data not shown).

In the wing imaginal disc, Hh is produced by cells of the
posterior compartment and signals to cells at the anterior–
posterior (AP) border (Basler and Struhl, 1994; Tabata and
Kornberg, 1994). Hh directly patterns the wing in the
vicinity of the AP border, corresponding to the L3–L4
intervein region in the adult (Mullor et al., 1997; Strigini
and Cohen, 1997); Hh also indirectly patterns the remainder
of the wing through the induction of dpp expression at the
AP border (Basler and Struhl, 1994; Zecca et al., 1995).
Overexpression of wild-type Hh in the posterior compart-
ment of the wing disc using en-GAL4 resulted in an
expansion of the anterior compartment (Fig. 4B). However,
when we overexpressed C84S-Hh in the posterior compart-
ment we observed a loss of tissue in the region surrounding
the compartment boundary, between veins L3 and L4, and
the partial fusion of these veins (Fig. 4E). This phenotype
resembles loss of function mutations in the genes fused and
cubitus interruptus (ci), which are required for Hh signal
transduction in the wing (Busson et al., 1988; Methot and
Basler, 1999). We also misexpressed Hh and C84S-Hh with
optomotor blind (omb)-GAL4, which is expressed in a
broad domain of the wing disc centered on the AP compart-
ment border (Grimm and Pflugfelder, 1996). Expression of
wild-type Hh using omb-GAL4 caused an expansion of the
L3–L4 region (data not shown); in contrast, C84S-Hh ex-
pression using omb-GAL4 resulted in an even stronger loss

of L3–L4 tissue and partial or complete fusion of veins 3 and p
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4 (Fig. 4C). These results suggest that, rather than mimick-
ing wild-type Hh, C84S-Hh may interfere with the endog-
enous Hh signal. Likewise, when C84S-Hh was misex-
pressed in the ocellar region of the eye-antennal imaginal
disc using eyeless-GAL4, formation of the ocelli was
blocked (data not shown); ocellar development requires Hh
signaling (Royet and Finkelstein, 1996).

C84S-Hh may directly compete with wild-type Hh for
binding to the Ptc receptor (Chen and Struhl, 1998; Marigo
et al., 1996); alternatively, it could simply interfere with the
production of wild-type Hh. To address this question we
expressed C84S-Hh in anterior wing disc cells that do not
normally produce Hh protein, using ptc-GAL4. ptc is up-
regulated in anterior cells responding to Hh; however, ptc is
not expressed in the posterior cells that produce Hh (Alex-
andre et al., 1996; Schwartz et al., 1995). C84S-Hh expres-
sion under the control of ptc-GAL4 also reduced the
amount of L3–L4 tissue produced (Fig. 4D). This result
suggests that C84S-Hh interferes with Hh signaling in the
extracellular environment and not at the level of intracel-
lular processing.

If C84S-Hh acts by competing with wild-type Hh, the
severity of the phenotype should depend on the relative
amounts of C84S-Hh and wild-type Hh present. We tested
this by altering the ratio of wild type to mutant protein
being expressed. When C84S-Hh was expressed in flies
heterozygous for hh, the reduction of the L3–L4 region was
enhanced (Figs. 4E and 4F), thus decreasing the dosage of
wild-type Hh relative to C84S-Hh exacerbates the domi-
nant negative phenotype.

C84S-Hh Reduces the Expression of Hh Target
Genes in the Wing Disc

To further investigate the disruption of Hh signaling by
C84S-Hh, we examined the expression of Hh target genes in
third instar wing imaginal discs in which C84S-Hh was
expressed. dpp-lacZ and ptc are normally upregulated at the
AP border in response to Hh (Figs. 5B and 5E). When
wild-type Hh was expressed using omb-GAL4, dpp-lacZ
expression and high levels of Ptc protein were detected
throughout most of the anterior compartment (Figs. 5C and
5F). When C84S-Hh was expressed, dpp-lacZ expression
long the AP border was reduced (Fig. 5A). However, this
eduction was rather mild, which may explain why the
verall size of the wing and its patterning outside of the
3–L4 region was unaffected. Ptc upregulation was also
reatly reduced when C84S-Hh was expressed (Fig. 5D).
The zinc-finger protein Ci is expressed throughout the

nterior compartment and is constitutively cleaved to pro-
uce a truncated protein that represses Hh target genes
Aza-Blanc et al., 1997); this cleavage event is suppressed in
ells receiving the Hh signal at the AP border, resulting in
stripe of the full-length form of Ci that can be detected
ith an antibody to a C-terminal epitope (Motzny and
olmgren, 1995; Fig. 5H). Stabilization of the full-length Ci

rotein was decreased when C84S-Hh was expressed (Fig.
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5G). When wild-type Hh was expressed, full-length Ci
appeared to be expanded but at a relatively low level (Fig.
5I). This may be explained by the effect of Hh on en, a
negative regulator of Ci (Schwartz et al., 1995). en expres-
sion is expanded across the AP border in late third instar in
response to Hh (Hidalgo, 1994; Strigini and Cohen, 1997;
Figs. 5K and 5N). En represses ci transcription, resulting in
a narrow stripe of reduced Ci staining at the AP border (Fig.
5N). The anterior expansion of En was prevented by
C84S-Hh expression (Figs. 5J and 5M); in contrast, high
levels of En were detected in the anterior compartment
when wild-type Hh was misexpressed (Figs. 5L and 5O).

Our results in adult wings suggested that C84S-Hh ex-
pressed in either the Hh-producing or -receiving cells could
interfere with Hh function (Figs. 4D and 4E). To confirm
that C84S-Hh could act nonautonomously on Hh target
genes, we expressed C84S-Hh in labeled clones of cells near
the AP border of the wing imaginal disc and examined Hh
target gene expression. Ptc expression was reduced in cells
adjacent to and up to a few cell diameters from C84S-Hh-
expressing clones (Figs. 6A–6C). Clones contained entirely
within the posterior compartment were able to reduce Ptc
expression in nearby anterior cells (Fig. 6C), confirming that
the C84S-Hh protein can be secreted and suggesting that it
competes with wild type Hh in the extracellular space.

A likely target for the dominant negative activity of
C84S-Hh is the Hh receptor Ptc. ptc mutant cells upregu-
ate Hh target genes; if C84S-Hh competes with wild-type
h for binding to Ptc, then it should have no dominant
egative effect on cells lacking ptc activity. However, if
84S-Hh acts independently of Ptc, for example, by directly

nhibiting Smo activation or by inhibiting another, unchar-
cterized, Hh receptor, it should still block Hh signaling in
tc mutant cells. We investigated this by producing clones
f cells mutant for ptc in wing imaginal discs that overex-
ressed C84S-Hh in the omb pattern. Ptc protein was
pregulated in ptc mutant clones both in wild-type wing
iscs (Figs. 6D–6F) and in wing discs overexpressing
84S-Hh (Figs. 6G–6I). Combined with the fact that the
ominant negative activity of C84S-Hh is nonautonomous,
his result suggests that C84S interferes with the binding of
ild-type Hh to Ptc or to a protein upstream of Ptc.
In summary, these results indicate that, while C84S-Hh

s processed to the mature signaling protein, it has no
ositive signaling activity. However, it is able to interfere at
he extracellular level with endogenous Hh signaling in the
ing disc. This suggests that C84S-Hh may still be able to

nteract with the Hh signaling pathway; this interaction is
ost likely to be at the level of the Hh receptor Patched.
he effects of C84S-Hh are seen in the region of the wing

hat requires the highest levels of Hh to develop normally,
nd the en gene, which requires high levels of Hh for its
xpression, is most strongly affected. These data extend the
bservation that C24S-Shh-N is a dominant negative pro-
ein in tissue culture (Williams et al., 1999) to show that
he same mutation in full-length Drosophila Hh gives it

ominant negative activity in vivo. o
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DISCUSSION

Previous studies have shown that interpretation of the
Hh signal depends on the amount of Hh that is sensed by
the receiving cell, as well as by the developmental history
of the cell, which may influence the levels of components
of the Hh signaling pathway. The timing and duration of Hh
production can also contribute to the final readout of the
signal. The data presented here suggest that acylation of Hh
proteins may provide another layer of complexity to this
signal.

Acylation of Shh Has Varying Effects on Its
Activity

Addition of an N-terminal acyl group to Shh has been
shown to require the thiol group of Cys-24, the N-terminal
residue of the mature signaling domain (Pepinsky et al.,
1998); it does not occur when Cys-24 is substituted by
serine. However, this mutation does not affect the process-
ing or secretion of Shh. Although C24S-Shh is much less
active than wild-type Shh in ventralizing the embryonic
mouse forebrain (Kohtz et al., 2001), we show here that it
retains significant limb patterning activity. It is possible
that this reflects a greater sensitivity of the limb bud than
the forebrain to Shh activity, allowing the limb bud to
respond more strongly to the weakly active C24S-Shh.
Alternatively, acylation could have tissue-specific effects
on Shh function in mouse. Although the majority of Shh
protein produced in tissue culture appears to be acylated
(Pepinsky et al., 1998), the distribution of acylated forms in
vivo has not been evaluated. Acylation might be restricted
to certain tissues, like the prechordal plate, or it might
occur ubiquitously but be sensed specifically in the fore-
brain.

Although soluble and lipid-modified Shh bind the Ptc
receptor with similar affinity in transfected EBNA-293 cells
(Pepinsky et al., 1998), and even deletion of 9 N-terminal
residues of Shh-N does not affect Ptc binding in cell culture
(Fuse et al., 1999; Williams et al., 1999), it is possible that
issue-specific modification of Ptc might allow it to specifi-
ally recognize acylated Shh. The N-terminal region of
uman Shh appears to form an extended structure protrud-
ng from the surface implicated in Ptc binding by modifica-
ion studies (Fuse et al., 1999; Pepinsky et al., 2000).
lternatively, acylation of Shh might alter its affinity for
ther differentially expressed molecules involved in signal-
ng or transport. These could be binding proteins such as
ip (Chuang and McMahon, 1999) that might preferentially
ind unacylated Shh, reducing its effective concentration;
actors required for extracellular transport, like the heparan
ulfate proteoglycans synthesized by the product of the tout
elu gene (Bellaiche et al., 1998; The et al., 1999); or
ypothetical cofactors that would increase the activity of
cylated Hh. The fibroblast cell line C3H10T1/2 appears to
ontain the acylation-sensitive determinants, as Shh with-

ut lipid modifications has a reduced effect on these cells
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11Importance of Shh C24 Is Not Conserved
(Pepinsky et al., 1998) and Shh-N missing amino acids
4–33 inhibits signaling to them by wild-type Shh-N (Ka-
suura et al., 1999; Williams et al., 1999). As studies in the
ouse have so far been limited to ectopic expression of Shh,

t would be of great interest to determine the effects of
eplacing wild-type Shh with a C24S mutant form.

Potential Roles of Acylation

Fatty acid chains are frequently added to intracellular
proteins in order to localize them to the plasma membrane
(Resh, 1999). Acylation of extracellular proteins has very
rarely been reported, but it would be expected to reduce
their solubility and restrict their diffusion. Hh has already
been shown to carry a C-terminal cholesterol modification
that restricts its action to nearby cells (Porter et al.,
996a,b); misexpression of the mature N-terminal signaling
omain without cholesterol increases its range of activity,
esulting in patterning defects. A single lipid modification
s usually insufficient for membrane localization (Resh,
999); thus acylation and cholesterol modification could
oth be required to tether Hh molecules. However, we have
o evidence that C24S-Shh and C84S-Hh are less efficiently
ocalized than wild-type Shh or Hh, as antibody staining
hows no difference in the distribution of the two forms
hen misexpressed (data not shown). Alternatively, the

mportance of acylation in addition to cholesterol modifi-
ation could be to promote Hh association with raft mem-
rane domains (Rietveld et al., 1999); this may be important
or its cellular trafficking or signaling.

If acylation were required to tether Hh molecules to the
lasma membrane, increasing their local concentration,
ne might expect that events requiring short-range Hh
ignaling would be more sensitive than those that Hh can
licit at a longer range. However, it is not clear that the
ange of Hh action is the critical difference between verte-
rate and fly limb patterning. There is some evidence that
rosophila Hh acts only as a short-range signal, as a large

ncrease in the level of Hh expression in its normal domain
as only minor effects (Fietz et al., 1995). A long-range
radient model for Hh action would imply that such an
ncrease would alter cell fates at a distance from the Hh
omain to those normally induced by the higher levels of
h closer to this domain. Although a gradient of Gli3
rocessing and widespread Ptc upregulation in the verte-
rate limb bud have been taken as evidence that Shh acts as
long-range signal in limb patterning (Drossopoulou et al.,
000; Wang et al., 2000), membrane-tethered Shh can
nduce equivalent long-range transformations of digit iden-
ity (Yang et al., 1997), suggesting that these may be due to
secondary signal.
Another possibility is that acylation might be required for
h release from cells, perhaps localizing it to intracellular

ransport vesicles containing the Dispatched protein (Burke
t al., 1999). However, our finding that C84S-Hh can inhibit
he function of wild-type Hh even when expressed only in

he responding cells using ptc-GAL4 suggests that it is able

Copyright © 2001 by Academic Press. All right
o exit the cell, rather than just interfering intracellularly
ith the release of wild-type Hh. Similarly, the ability of
24S-Shh expressed in the limb ectoderm to activate
oxd13 expression in the underlying mesenchyme argues

ither that it can move freely between germ layers or that it
ctivates a second signal with this ability. Thus it is likely
hat acylation is important for Hh signaling through Ptc,
ither because it causes more productive binding to Ptc
tself or because it affects Hh interaction with other pro-
eins.

C84S-Hh Antagonizes Wild-Type Hh Function

Our observation that overexpression of C84S-Hh has
nonautonomous dominant negative effects on Hh function
suggests that this mutant protein is able to compete with
wild-type Hh for binding to a normal Hh target, but does
not have signaling activity. As C84S-Hh affects the expres-
sion of the dpp and ptc genes and the Ci protein, which are
known to be regulated by the Ptc receptor (Johnson et al.,
1995; Li et al., 1995), this target is probably Ptc. Indeed,
C24S-Shh-N is able to bind Ptc in vitro with equivalent or
greater affinity than Shh-N (Williams et al., 1999). This
interpretation is also consistent with our observation that
C84S-Hh has no dominant negative effect on ptc mutant
clones. We do not know whether the C84S-Hh protein can
be internalized on binding Ptc; although we see punctate
Hh antibody staining in wing discs overexpressing C84S-
Hh, its presence in the posterior as well as the anterior
compartment and lack of consistent colocalization with
punctate Ptc staining suggests that it could represent aggre-
gation of the protein rather than internalization (J. D. Lee,
data not shown). It is unlikely that C84S-Hh promotes the
internalization of Ptc, since removal of Ptc from the cell
surface appears to be sufficient for wild-type Hh function
(Denef et al., 2000).

It is possible that different target genes are differentially
affected by mutations at the N-terminus of Hh. When
C84S-Hh is expressed in the wing the 3–4 intervein region
is deleted; this is precisely the region that requires direct
Hh signaling rather than indirect patterning through Dpp.
The serine–threonine kinase Fused and the COE protein
Knot are both required specifically for the correct growth of
the intervein region and the positioning of veins 3 and 4
(Busson et al., 1988; Mohler et al., 2000; Nestoras et al.,
1997; Vervoort et al., 1999), and signaling through these
proteins might be especially sensitive to Cys-84. However,
the domain of dominant negative activity could also be
attributed to a relatively weak inhibition of Hh function
that can only be observed in regions that normally require
the highest Hh concentrations (Mullor et al., 1997; Strigini
and Cohen, 1997). We note that overexpression of C24S-Shh
in the posterior region of the mouse limb appears to have no
inhibitory effect on endogenous Shh activity, suggesting
that C24S-Shh cannot act as a Shh antagonist in this
context, in spite of the antagonistic activity of C24S-Shh-N

in vitro (Williams et al., 1999). One possible difference
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between these studies is the likely presence of cholesterol
on the Shh molecules we used and not on the truncated
domains produced for the in vitro study.

The Importance of the N-Terminal Cysteine Is Not
Conserved

Our comparison of the effects of mutating the N-terminal
residue of mature Hh in mouse and fly appendages reveals a
surprising lack of conservation. Although Hh is required at
the posterior of both the mouse limb and the fly wing, and
may mediate some of its effects through BMP homologues
in both cases, signaling requires an N-terminal cysteine
only in Drosophila. Although Cys-84 is essential for the
unction of Drosophila Hh, mutation of this residue does
ot affect Hh processing (Fig. 3). The C84S-Hh protein also
ppears to be secreted as evidenced by its ability to alter
ing patterning in the anterior compartment when ex-
ressed in either the posterior compartment or the anterior
ompartment and by its ability to nonautonomously lower
he expression of Hh target genes. Acylation of the Dro-
ophila Hh protein has not been directly demonstrated, due
o the lack of sufficiently sensitive antibodies. However,
cylation of human Shh was shown to occur more effi-
iently in insect cells than in mammalian cells in culture
Pepinsky et al., 1998), indicating that the acylating en-
ymes are likely to be present in Drosophila. In addition,
ohtz et al. (2001) have shown that C24S-Shh and wild-type
nacylated Shh produced in E. coli have equivalent activi-
ies on forebrain explants, suggesting that loss of acylation
s the major effect of mutating this cysteine. However, it

ay not be the only effect, as C24S-Shh-N can antagonize
he weak effect on C3H10T1/2 cells of unmodified Shh-N
Williams et al., 1999). Thus Cys-84 could be directly
ecognized by downstream components in addition to its
equirement for Hh acylation. It is also possible that in
ivo, Cys-84 is modified by adducts other than fatty acids.
Because Drosophila cell membranes contain shorter

hospholipids and are therefore fluid at lower temperatures
han mammalian membranes (Rietveld et al. 1999), asso-
iation with raft domains mediated by acylation could be
ore critical for Drosophila Hh. Alternatively, the differing

mportance of the N-terminal cysteine in flies and mice
ould simply indicate divergence of the protein components
f both pathways. Indeed, we have found that misexpres-
ion of human Shh in the central domain of the Drosophila
ing disc causes broadening of wing veins and differentia-

ion of ectopic vein tissue, but not Hh-like expansions or
uplications of the anterior compartment (J. D. Lee, unpub-
ished data). This suggests that human Shh is not able to
ignal normally through Drosophila Ptc to induce dpp
xpression, although it could be causing ectopic vein for-
ation by directly inducing the vein gene (Wessells et al.,

999). The C24S mutant form of human Shh produces a
eaker version of the same phenotype and has no apparent
ominant negative effect on Hh signaling, again suggesting

hat it does not bind the same proteins as Drosophila Hh

Copyright © 2001 by Academic Press. All right
(J. D. Lee, unpublished data). This is surprising as zebrafish
Shh has been shown to cause small anterior duplications in
the fly wing when expressed surrounding the wing pouch
(Ingham and Fietz, 1995); the difference could be due to the
few sequence changes between zebrafish and human Shh or
to the different domains of misexpression. The effects of
protein modifications may be altered during evolution due
to divergence of the interface between two interacting
proteins. Our results suggest that modification of the
N-terminal cysteine of Hh may contribute to altering its
activity in a tissue- and species-specific manner.
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