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Genetic and epigenetic coordination of 
cortical interneuron development

Kathryn C. Allaway1,2,3,7, Mariano I. Gabitto4,7, Orly Wapinski3,7, Giuseppe Saldi2,3,5, 
Chen-Yu Wang2,3, Rachel C. Bandler1,2,3, Sherry Jingjing Wu2,3, Richard Bonneau4,5,6 ✉ & 
Gord Fishell2,3 ✉

One of the hallmarks of the cerebral cortex is the extreme diversity of interneurons1–3. 
The two largest subtypes of cortical interneurons, parvalbumin- and 
somatostatin-positive cells, are morphologically and functionally distinct in 
adulthood but arise from common lineages within the medial ganglionic eminence4–11. 
This makes them an attractive model for studying the generation of cell diversity. 
Here we examine how developmental changes in transcription and chromatin 
structure enable these cells to acquire distinct identities in the mouse cortex. Generic 
interneuron features are first detected upon cell cycle exit through the opening of 
chromatin at distal elements. By constructing cell-type-specific gene regulatory 
networks, we observed that parvalbumin- and somatostatin-positive cells initiate 
distinct programs upon settling within the cortex. We used these networks to model 
the differential transcriptional requirement of a shared regulator, Mef2c, and 
confirmed the accuracy of our predictions through experimental loss-of-function 
experiments. We therefore reveal how a common molecular program diverges to 
enable these neuronal subtypes to acquire highly specialized properties by 
adulthood. Our methods provide a framework for examining the emergence of 
cellular diversity, as well as for quantifying and predicting the effect of candidate 
genes on cell-type-specific development.

To investigate the establishment of parvalbumin (PV) and somatostatin 
(SST) interneuron identities, we first sought to determine the earliest 
timepoint at which they can be distinguished from projection neurons, 
the other major derivative in the medial ganglionic eminence (MGE). 
Our previous work indicated that, at a transcriptional level, this distinc-
tion is first detectable in postmitotic populations, when cells diverge 
into three branches corresponding to specific fates: interneuron pre-
cursors (branch 1) and projection-neuron precursors (branches 2 and 
3)8. To explore whether there is an earlier chromatin signature that is 
indicative of interneuron identity, we compared the RNA expression 
and chromatin accessibility in these precursor populations at embry-
onic day (E) 13, the peak of MGE interneuron neurogenesis.

Transcription and chromatin in the MGE
To this end, we performed single-cell RNA sequencing (scRNA-seq), 
single-cell assay for transposase-accessible chromatin with sequencing 
(ATAC–seq) and multiomic (dual RNA and ATAC) sequencing on the E13 
MGE from Dlx6acre;Ai14 mice, using the expression of the Dlx6a-based 
reporter to discern mitotic progenitors from postmitotic precursors12 
(Extended Data Fig. 1a–h, Supplementary Table 1). Diffusion map analy-
sis of E13 MGE scRNA-seq and scATAC–seq datasets resulted in cells being 
ordered into a single trajectory, in which the primary source of variability 

was maturation state (Fig. 1a, b). Notably, promoter accessibility for 
developmentally relevant genes generally increases earlier and persists 
longer compared to gene expression (Fig. 1c, d, Extended Data Fig. 1i).

To identify the earliest features that are indicative of an interneuron 
(branch 1) identity, we subsetted postmitotic neurons and used several 
maturation trajectory methods to identify the three developmental 
branches, using the multiomic dataset to ensure accurate label transfer 
between scRNA-seq and scATAC–seq analyses (Fig. 1e, Extended Data 
Figs. 2a, b, 3a–c). Next, we performed differential expression analysis 
to identify the earliest branch 1 genes expressed in postmitotic cells. 
To identify distal chromatin elements associated with these genes, we 
collated ATAC-seq peaks surrounding them and trained a classifier to 
identify those that were most informative for distinguishing branch 
identity (Methods). Further analysis confirmed that these peaks were 
predominantly accessible in branch 1 cells (Extended Data Fig. 4a, b, 
Supplementary Table 2).

Narrowing our focus to transcription factors, we found that Maf—a 
regulator of cell identity13,14—is both highly expressed in branch 1 
interneurons and exhibits an enriched DNA-binding motif in their open 
chromatin (Extended Data Fig. 3). Examination of chromatin accessibil-
ity surrounding this gene revealed that distal loci become accessible 
prior to the initiation of gene expression (Fig. 1f). Similar dynamics 
were observed for several other branch-1-specific transcription factors 
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(Fig. 1g, Extended Data Fig. 4a, b), suggesting that distal elements might 
provide the earliest indication of interneuron identity, perhaps as a 
form of priming15. We therefore explored the accessibility of these distal 
elements prior to cell cycle exit. To this end, we used our classifier to 
annotate mitotic and postmitotic cells collected at E13. This failed to 
detect branch 1 interneurons prior to cell cycle exit (Extended Data 
Fig. 4c). Therefore, there is no evidence at present of the divergence 
of interneurons from projection cells prior to cell cycle exit.

Remodelling upon cortical settling
To investigate how early interneuron identity diverges, we next collected 
scRNA-seq and scATAC–seq datasets from the E18, postnatal day (P) 2, 
P10 and P28 cortex of Dlx6acre;INTACT mice (Supplementary Table 1). 
In adult cortical interneurons, scRNA-seq and scATAC–seq profiles are 
closely correlated16–18. However, our investigation of these populations 
at E13 reveals a misalignment between transcriptional and chromatin 
signatures in developing cells. To evaluate when during development 
they come into concordance, we aligned these datasets at each timepoint 
using both Seurat canonical correlation analysis19 and Conos20 (Fig. 2a–d, 

Extended Data Figs. 5–7). Analysis of the more mature populations (P10, 
P28) confirmed that cluster labels can be transferred from scRNA-seq to 
scATAC–seq data with high confidence (Fig. 2c, d). By contrast, this was not 
the case at early postnatal or embryonic timepoints (E18, P2) (Fig. 2a, b).

P2 is the timepoint at which interneurons complete migration, reach 
their settling position in the cortex and begin circuit integration21. Con-
sistent with our RNA/ATAC alignment comparisons, Jaccard analysis of 
scATAC–seq data across development segregates timepoints before 
and after P2 (Fig. 2e). To examine the emergence of subtype-specific 
features at this transition, we analysed peaks unique to PV (44,322) 
or SST (24,428) interneurons at P28 and found that these mature 
subtype-specific elements are first detectable in distal loci at P2 (Fig. 2f, 
Extended Data Fig. 8a–d). Therefore, the developmental window during 
which interneurons settle within cortical layers represents a period in 
which chromatin structure undergoes substantial remodelling.

To characterize this transition, we catalogued accessible chromatin 
elements specific to PV or SST interneurons at both migratory (E14–
E18) and post-settling (P2–P28) timepoints. Branch-1-specific loci 
generally become less accessible at this juncture, which is consistent 
with their role in establishing common interneuron identity (Fig. 2g). 
Next, we identified transcription-factor motifs enriched during these 
two periods, the majority of which were shared between PV and SST 
interneurons: LHX and DLX motifs during migration, and FOS/JUN 
motifs post-settling (Supplementary Table 3). By contrast, few tran-
scription factors were cell-type-selective during these periods. In SST 
cells, SOX and POU motifs were sequentially enriched during migratory 
and post-settling periods, respectively (Fig. 2h). In PV cells, MEF motifs 
became enriched at E18 and persisted post-settling. These dynamic 
patterns correspond with the known function of these transcription 
factors during these phases of interneuron development8,22–24.

Our scATAC–seq analysis suggests that certain transcription factors 
are utilized in a cell-type-specific manner despite not being selectively 
expressed. To investigate this possibility, we performed CUT&RUN 
sequencing for MEF2C in the mature PV and SST populations. This 
revealed both common and subtype-specific binding of MEF2C, with 
more loci specifically bound in PV cells compared to SST cells (Fig. 2i, 
Extended Data Fig. 9a–d). Most of the peaks identified with CUT&RUN 
were also found in our scATAC–seq analysis, although only a subset of 
these featured canonical MEF2C-binding motifs (Fig. 2j, Extended Data 
Fig. 9e). We could therefore use peak co-accessibility to link CUT&RUN 
peaks to gene promoters (Fig. 2k). Gene ontology analysis revealed 
that these putative MEF2C targets are involved in synapse assembly 
and organization (Extended Data Fig. 9j, k).

Divergence of gene regulatory networks
The divergence in the gene expression and chromatin structure of PV and 
SST interneurons greatly accelerates upon settling within the cortex. To 
characterize these dynamics, we constructed gene regulatory networks 
(GRNs) using a multitask inference methodology25 and separated shared 
regulatory interactions from cell-type-specific ones across development 
(E18, P2, and P28) (Fig. 3a, b). Each regulator–target interaction is rep-
resented in our GRNs as an edge linking transcription factors to genes. 
The number of detected genes and edges progressively increases at each 
sequential timepoint (Fig. 3c, d). Over development, cell-type-specific edges 
replace shared ones (Fig. 3e, f). Notably, transcription factors co-expressed 
within both cell types shift from regulating common to cell-type-specific 
genes (Fig. 3g). This observation suggests that the chromatin landscape 
has been sculpted such that cell-type-specific gene expression can be medi-
ated without a requirement for selective transcription factor expression.

Loss of Mef2c perturbs development
Having developed a comprehensive model of gene regulation in PV 
and SST interneurons, we aimed to investigate how the removal of a 
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critical transcription factor affects gene expression and test our ability 
to predict these perturbations in silico. In a previous study, we found 
that Mef2c is essential for the development of PV interneurons, resulting 
in their loss after P68. This is consistent with the enrichment of MEF2C 
motifs in PV-specific ATAC–seq peaks (Fig. 2h). However, our CUT&RUN 
analysis revealed considerable utilization of MEF2C within both PV 
and SST cells (Fig. 2i–k). Thus, Mef2c is an ideal exemplar with which to 
examine both the unique and shared aspects of gene regulation across 
these developing cell types.

Using an Lhx6iCre driver to remove Mef2c in both PV and SST cells, we 
examined the effect on gene expression and chromatin structure at P2. 
We first integrated scRNA-seq data from these P2 Mef2c conditional 
knockout (cKO) mice with that from P2 wild-type (WT) mice. Unbiased 
clustering analysis revealed that a greater number of cKO cells colo-
calize with wild-type SST interneurons than with PV cells, indicating 
that the loss of Mef2c disproportionately disrupts PV cell maturation 

(Fig. 4a–c). The fragility of cKO neurons necessitated collecting single 
nuclei for this experiment. To ensure that the differences seen between 
cells from WT and cKO mice were not a result of comparing whole-cell 
with nuclear RNA-seq data, we collected an additional nuclear dataset 
from P2 WT mice and confirmed that, when compared to cKO, both 
the clustering and differential gene expression were highly similar 
to the results using whole-cell WT data (Extended Data Fig. 10a–c,  
Supplementary Table 4).

Our scATAC–seq analysis of cKO cells confirmed the strong effect of 
Mef2c loss on PV cell development, but also revealed the more subtle 
effect on SST cells. In clustering analysis of scATAC–seq data, both PV 
and SST cKO cells segregate from WT cells (Extended Data Fig. 10d–g).  
Furthermore, during normal development, cell-type-specific and 
shared peaks featuring Mef2c motifs increase in number between 
E18 and P2. The overall number of peaks seen in the P2 Mef2c cKO 
cells, however, resembles that seen at E18, indicating a delay in their 
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maturation (Fig. 4d, e). Notably, the proportion of PV-specific peaks 
was selectively reduced in the cKO cells (Fig. 4d, f, Extended Data 
Fig. 10e). These findings indicate that Mef2c sculpts the chromatin 
landscapes of both PV and SST interneurons during early postnatal 

development, and has a particularly important role in the opening 
of PV-specific loci.

To demonstrate that GRNs are more than a static representation 
of cell state, we queried whether we could use them to quantitatively 
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composition delineated by, from top to bottom, marker gene expression, cell 
type, timepoint and cell number. d, Proportion of scATAC–seq peaks with 
MEF2C motifs in E18 WT, P2 WT, and P2 Mef2c cKO datasets. Charts are scaled to 
reflect the total number of peaks. e, Venn diagram showing all peaks with 

MEF2C motifs in WT P2 and cKO P2 in PV cells (left) and SST cells (right).  
f, Number of MEF2C-binding sites (identified in the MEF2C CUT&RUN 
experiment, see Fig. 2) that were either accessible in both the P2 WT and Mef2c 
cKO scATAC–seq dataset (light green) or were accessible in the P2 WT cells but 
inaccessible in the cKO (dark green). g, UMAP of simulated Mef2c knockout 
cells (P2SimKO) and cells from the true cKO RNA-seq dataset (P2cKO), P2 WT 
RNA-seq dataset (P2WT) and E18 WT RNA-seq dataset (E18).
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predict changes in gene expression. First, we generated simulated 
Mef2c knockout neurons (P2SimKO) by computationally removing Mef2c 
in the P2 GRN. By integrating these cells with the experimental cKO 
(P2cKO) and wild-type P2 (P2WT) cells, we observed the formation of 
clusters primarily composed of P2SimKO and P2cKO cells (Fig. 4g, clusters 
4 and 5), confirming that our simulated output matched those seen 
in true cKO cells. Next we examined the 364 direct targets of Mef2c 
predicted by the GRN, and found that 81% of them were differentially 
expressed between P2WT and P2cKO datasets (Supplementary Table 4). 
These direct targets included 17 transcription factors. We next itera-
tively calculated the differential expression of their targets (4,205 in 
total) and found that 81% of these predicted second-order Mef2c tar-
gets were correctly inferred. The same analysis comparing cKO data 
to single-nucleus rather than whole-cell WT data similarly found that 
79% of direct and 77% of indirect targets were differentially expressed 
(Supplementary Table 4). Finally, as an independent validation of our 
P2 GRN, we re-calculated Mef2c transcription-factor activity using gene 
expression values measured in the P2cKO dataset. This computational 
experiment reported a transcription-factor activity centred around 
zero, compared to the unaltered P2 values that centre around −0.1; 
this validates that removal of Mef2c eliminates its transcription-factor 
activity from the network. Taken together, these results demonstrate 
that, with sufficient scRNA-seq and ATAC–seq data, we are now able to 
accurately infer the effects of gene loss in silico.

Discussion
In this study, we examined how PV and SST interneurons arise from com-
mon progenitors to become molecularly and functionally distinct by 
adulthood. We observed that these cell types initially share a molecular 
program that establishes a general interneuron identity before becoming 
diversified through the actions of cell-type-specific transcription factors. 
The maintenance of their distinct fates is stabilized in mature cells through 
the crystallization of unique chromatin landscapes. Our analysis revealed 
that RNA expression gives an instantaneous measure of the developmental 
state of a cell, whereas chromatin provides both a history of the develop-
mental progression of a cell and a predictor of its future identity.

As development proceeds, we found that RNA-seq and ATAC–seq data 
remain discordant until interneurons reach their settling positions and 
begin terminal differentiation at P2. This represents a critical inflection 
point at which cells transition from having predominantly shared chromatin 
architecture to establishing cell-type-specific landscapes. Notably, the 
comparison of GRNs at different developmental timepoints revealed that, in 
adulthood, shared transcription factors are able to direct cell-type-specific 
gene programs. This finding indicates the strong contribution of chro-
matin architecture to the maintenance of adult fate. Indeed, the ability 
to reprogram terminally differentiated cells requires the erasure of the 
unique chromatin marks that characterize them as mature populations26,27.

In addition to providing a global overview of cell-type-specific molecu-
lar programs, GRNs are powerful predictive models. With the anticipated 
improvements that will be gained through iterative analysis, this has 
far-reaching implications both for developmental biology and for assess-
ing the effect of candidate genes on cell-type-specific development. In 
this regard, the fact that loss-of-function mutations of MEF2C in humans 
result in autism spectrum disorder and intellectual disability28,29 suggests 
that analyses such as this have the potential to provide important insight 
into the etiology of these disorders. Our work therefore not only reveals 
how specific interneuron identities arise but also provides a roadmap 
for understanding both normal and pathophysiological development.
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Methods

Mouse lines
For embryonic timepoints, male hemizygous Dlx6acre mice30 ( Jax stock 
008199) were crossed with female homozygous Ai9 or Ai14 mice31 
(Rosa-LSL-tdTomato, Jax stock 007909 or 007914) and checked daily 
for the presence of a vaginal plug, with the morning a plug was found 
being considered embryonic day 0. Embryos were screened using a 
fluorescence microscope for the presence of tdTomato. For embry-
onic timepoints using wild-type mice, timed pregnant CD-1 mice were 
used (Charles River 022). For postnatal timepoints, male hemizygous 
Dlx6acre mice were crossed with female homozygous INTACT mice32 
(flox-Sun1-eGFP, Jax stock 021039) to yield Dlx6acre;INTACT offspring. 
In Mef2c conditional knockout experiments, for wild-type controls, 
Dlx6acre males were crossed with female homozygous Ai9 mice to yield 
offspring with both alleles collected at P2. For Mef2c conditional knock-
outs, male Lhx6iCre/o;Mef2cfl/+ mice33,34 ( Jax stock 026555 and 025556) 
were crossed with INTACT;Mef2cfl/fl females to yield offspring with all 
necessary experimental alleles collected at P2. All mouse colonies were 
maintained in accordance with protocols approved by the Institutional 
Animal Care and Use Committees at Harvard Medical School and the 
Broad Institute of MIT and Harvard. Both male and female mice were 
used for all scATAC–seq and scRNA-seq experiments. Blinding and 
randomization of animal experiments were not applied here.

Single-cell preparation for scATAC–seq and scRNA-seq
For both ATAC–seq and RNA-seq library preparation from embryonic 
timepoints (E13–E18), embryos were collected from pregnant dams 
and relevant brain regions were dissected in ice-cold Leibovitz’s L-15 
medium. Pooled tissue from several embryos were dissociated using 
the Neural Tissue Dissociation Kit (T) (Miltyeni Biotec, PN-130-093-231) 
according to the manufacturer’s instructions. Dissociated cells were 
then filtered through a 70 µm filter, centrifuged at 300g for 5 min at 
4 °C and, where cell-sorting was required, resuspended in 1% BSA in 
PBS for cell sorting of tdTomato+ cells. Sorting was performed on a 
Sony SH800S cell sorter with a 100 µm chip. Cells for scRNA-seq were 
then directly used for input to 10x Genomics scRNA-seq library prep. 
For scATAC–seq, nuclei were isolated from sorted cells as described in 
the 10x Genomics demonstrated protocol ‘Nuclei Isolation for Single 
Cell ATAC Sequencing’ for input to single-cell ATAC library prepara-
tion. For the P2 whole-cell WT RNA-seq dataset, cell preparation was 
performed as described above, except with ACSF used for the dissec-
tion instead of L-15.

For P10 and P28 RNA-seq datasets, as well as the Mef2c cKO P2 data-
set and control wild-type nuclear P2 dataset, nuclei were isolated 
as described previously with some modifications32. In brief, brains 
were collected, sectioned coronally on a stainless steel mouse brain 
slicer (Zivic Instruments), and regions of interest were dissected in ice 
cold homogenization buffer (HB) (0.25 M sucrose, 25 mM KCl, 5 mM 
MgCl2, 20 mM Tricine-KOH, 1 mM DTT, 0.15 mM spermine, 0.5 mM 
spermidine). Dissected tissue was then transferred to a 2 ml dounce 
homogenizer containing HB + 0.3% IGEPAL-CA630 + 0.2 U µl−1 RNAse 
inhibitor and homogenized with 10 strokes of pestle A and 10 strokes 
of pestle B. Nuclei were then filtered through a 30 µm filter and cen-
trifuged at 500g for 5 min at 4 °C. The pellet was resuspended in 1% 
BSA + 0.2 U µl−1 RNAse inhibitor in PBS and centrifuged again at 500 g 
for 5 min at 4 °C. The pellet was then again resuspended in 1% BSA + 
0.2 U µl−1 RNAse inhibitor in PBS and filtered through a 40 µm filter 
for sorting of GFP+ nuclei on a Sony SH800S cell sorter with a 100 µm 
chip. Nuclei were collected in 1% BSA + 0.2 U µl−1 RNAse inhibitor for 
input to 10x Genomics scRNA-seq.

For all ATAC–seq postnatal timepoints (P2 WT and cKO, P10, P28), 
brains were collected, sectioned coronally on a stainless-steel mouse 
brain slicer (Zivic Instruments), and regions of interest were dissected 
in ice-cold ACSF. Tissue was then transferred to a Dounce homogenizer 

containing lysis buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2, 
0.01% Tween-20, and 0.01% IGEPAL CA-630, 0.001% digitonin). Tissue 
was homogenized with 10 strokes of pestle A, 10 strokes of pestle B, and 
incubated for 5 min on ice before being filtered through a 30 µm filter 
and centrifuged at 500g for 10 min at 4 °C. The pellet was resuspended 
in 1% BSA in PBS for sorting for GFP+ nuclei. For all timepoints, cells or 
nuclei were sorted into diluted nuclei buffer (10x Genomics) on a Sony 
SH800S cell sorter with a 100 µm chip.

Single-cell ATAC–seq and RNA-seq library preparation and 
sequencing
Single-cell ATAC–seq libraries for all timepoints were prepared on the 
10x Genomics platform using the Chromium Single Cell ATAC Library 
& Gel Bead Kit v1.0 (PN-1000111), Chromium Chip E Single Cell kit (PN-
1000156) and Chromium i7 Multiplex Kit N, Set A (PN-1000084) as 
instructed by the manufacturer. Single-cell RNA-seq libraries for E13, 
P2 Mef2c cKO, P10 and P28 datasets were prepared on the 10x Genomics 
platform using the Chromium Single Cell 3ʹ Library and Gel Bead Kit 
v3.0 (PN-1000075), Chromium Single Cell 3ʹ Library Construction Kit 
v3.0 (PN-1000078), Chromium Chip B Single Cell kit (PN-1000154) and 
Chromium i7 Multiplex Kit (PN-120262) as instructed by the manufac-
turer. The P2 nuclear RNA-seq library was prepared using the Chromium 
Single Cell 3ʹ Library and Gel Bead Kit v3.1 (PN-1000121). Single-cell 
RNA-seq libraries for E18 and P2 whole-cell wild-type datasets were 
prepared on the 10x Genomics platform using the Chromium Single 
Cell 3ʹ Library and Gel Bead Kit v2.0 (PN-120237), Chromium Single Cell 
3ʹ Library Construction Kit v2 (PN-120267), Chromium Chip A Single 
Cell kit (PN-1000009) and Chromium i7 Multiplex Kit (PN-120262) as 
instructed by the manufacturer. Libraries were sequenced using the 
Nova-Seq 100 cycle kit (Illumina) by Broad Institute Genomic Services.

Single-cell ATAC–seq data processing
Raw scATAC–seq data was processed using the standard CellRanger 
ATAC v1.1.0 pipeline (10x Genomics). Reads were aligned to the 
GRCm38 (mm10) Mus musculus genome. Peak calling was performed 
using ChromA with default parameters “ChromA atac -i <file1> <file2> 
-spec mouse”. Peak calling on subpopulations of cells was performed 
with ChromA after isolation specific barcodes using “ChromA filter 
-c <cells> -i <file>”. Jaccard distance calculation was performed using 
bedtools jaccard.

Single-cell RNA-seq data processing
Raw scRNA-seq data was processed using the standard CellRanger 
v3.0.0 pipeline (10x Genomics). Reads were aligned to the GRCm38 
(mm10) M. musculus genome. For single-nuclei RNA-seq datasets, a 
custom pre-mRNA reference from the mm10 genome was generated 
allowing intronic sequences to be included in gene counts. It cannot be 
ruled out that some differences in gene expression could result from 
differences in 10x Genomics chemistry (v2 vs v3) or cell preparation 
techniques (whole-cell vs nuclear).

E13 Multiome (dual RNA/ATAC) library preparation and data 
processing
E13.5 embryos were collected from timed pregnant CD-1 mice and the 
MGE was dissected in ice-cold Leibovitz’s L-15 medium. Pooled tis-
sue from several embryos were dissociated using the Neural Tissue 
Dissociation Kit (T) (Miltyeni Biotec, PN-130-093-231) according to 
the manufacturer’s instructions. Dissociated cells were then filtered 
through a 70 µm filter, and centrifuged at 300g for 5 min at 4 °C. Nuclei 
then were isolated as described in the 10x Genomics demonstrated 
protocols ‘Nuclei Isolation from Embryonic Mouse Brain for Single 
Cell Multiome ATAC + Gene Expression Sequencing’ for fresh tissue for 
input to single-cell Multiome library preparation. Single-cell multiomic 
(ATAC + Gene Expression) libraries were prepared on the 10x Genom-
ics platform using the Chromium Next GEM Single Cell Multiome 



ATAC + Gene Expression Reagent Bundle (PN-1000285), Chromium 
Next GEM Chip J Single Cell Kit (PN-1000230), Single Index Kit N Set A  
(Pn- PN-1000212) and Dual Index Kit TT Set A (PN-1000215) as instructed 
by the manufacturer. Libraries were sequenced using the Nova-Seq 100 
cycle kit (ATAC library) and Next-Seq 150 cycle kit (Gene Expression 
library) (Illumina) by Broad Institute Genomic Services.

Raw multiomic data was processed using the Cell Ranger ARC v1.0.0 
pipeline (10x Genomics). Reads were aligned to the GRCm38 (mm10) 
M. musculus genome.

Assignment of mitotic and postmitotic states
We defined mitotic and postmitotic populations for cells within 
scRNA-seq datasets following a previously described procedure8. In 
brief, in each cell we compared the sum of phase-specific gene expres-
sion to the distribution of background 100 randomly selected genes. 
Phase-specific enrichment was z-scored against the background gene 
sets. Finally, the S-phase score and G2/M phase score was subtracted to 
create the cell cycle score which is used to select cycling cells. Cell cycle 
signature was calculated using the previously published cell cycle gene 
list35. We did not regress out the cell cycle signature. In scATAC–seq data-
sets, cells were assigned a developmental phase by extending labels of 
multiome experiments. In multiome experiments, the scRNA-seq por-
tion of the data can be annotated using the above procedure and these 
labels can be propagated to the corresponding scATAC–seq dataset.

Pseudotime trajectory analysis
Branch analysis for postmitotic cells from the scRNA-seq datasets was 
performed as described previously8. In brief, postmitotic cells were 
isolated and the Seurat pipeline was run19. Unsupervised clustering 
was run using the Leiden algorithm. Next, diffusion map represen-
tation was calculated using the diffusionMap library in R. Finally, 10 
principal component analysis components were fed into Palantir36 
and pseudotime and branch probabilities were calculated using the 
following parameters (num_waypoints=1000, knn=30). Lineages were 
defined using slingshot37.

Generation of pseudotime time traces of gene expression and 
accessibility
Chromatin accessibility and gene expression time traces were 
smoothed over pseudotime with local polynomial regression fitting 
in R (loess) separately, then min–max normalized.

Peak gene branch-specific association
To associate chromatin accessibility peaks annotated with ChromA38 
to corresponding genes, we treated each gene independently. First, 
we selected peaks located within a 500 kb window around the gene 
and built a classifier by using these peaks as features in an elasticnet 
regularized mutlinomial classification (sklearn SGDClassifier with fol-
lowing parameters class_weight='balanced', l1_ratio=0.95, loss='log', 
penalty='elasticnet') task set to distinguish cells confidently assigned 
to each postmitotic branch using peaks as features. Hyper parameters 
were tuned using cross validation, and performances estimated using 
an 80% (train) 10% (validation) 10% (test) observation split. Finally, the 
most classification-relevant peaks are kept and sorted if their absolute 
coefficient is >0. Distal aggregated accessibility score was built by first 
performing a min–max normalization of each peak time trace (through 
pseudotime). Next, time traces were added and min–max normalized 
again. The same classification procedure was used for annotated cells 
belonging to each branch or early mitotic cells. Mitotic cells were dis-
tinguished by the mitotic–postmitotic separation. Early mitotic cells 
were those mitotic cells that lacked expression of Sp9.

Calculation of ATAC–seq aggregated scores
Aggregated scores were calculated by selecting a subset of peaks that 
are differentially accessible in the condition of interest (that is, peaks 

for the calculation of branch 1 aggregated scores are peaks differentially 
accessible in branch 1 cells compared to branch 2 and 3). Next, library 
size was corrected by normalizing the number of reads in each region 
by the total number of reads in the cell. The normalized read size was 
aggregated by summing reads in selected regions. Finally, an average 
aggregated accessibility was computed.

scATAC–seq cell-type classification
Cardinal class assignments into PV and SST cell types at P28 and P10 was 
performed by analysing clusters for promoter accessibility of cardinal 
class marker genes. Next, to transfer labels to E18, we identified mutu-
ally exclusive peaks shared in each cardinal class at P28 and P10 (that 
is, running ChromA consensus on datasets from PV cells belonging to 
P10 and P28 or SST at the same time points). We used these peaks to 
build a classifier identifying cardinal classes and using CGE cells as a 
null hypothesis. We repeated the same procedure to transfer labels at 
E14 by using mutually exclusive peaks from E18 and P10.

Clustering of scRNA-seq datasets
E18, P2, P10 and P28 scRNA-seq datasets were processed using the Seu-
rat pipeline19. The number of principal components used for clustering 
analysis were determined with the ElbowPlot function. Graph-based 
clustering was then used as described to assign cells to clusters. Clusters 
in the P28 dataset were then assigned to a cardinal class on the basis of 
the expression of marker genes. Cells within P10, P2 and E18 datasets 
were assigned to a cardinal class via Seurat canonical correlation analy-
sis (CCA) and label transfer of P28 dataset cardinal class assignments 
as described previously8.

Generation of snap objects and integration of scATAC–seq and 
scRNA-seq data
The fragments.tsv from the output of the CellRanger ATAC pipeline 
were then used to generate snap files for analysis using the snapATAC 
package as described previously18. 5 kb bins were used to partition the 
genome and create the cell-by-bin matrix. Cells were clustered using 
k-nearest-neighbour graph-based clustering (k = 15). For visualization 
of marker gene loci, accessibility within gene body regions was calcu-
lated, counts were normalized by RPM, and the resulting cell-by-gene 
matrix was smoothed with Magic. For integration with scRNA-seq data, 
a cell-by-gene matrix was produced for the scATAC–seq dataset with 
the same method for all variable genes within the RNA-seq dataset. 
The scATAC–seq cell-by-gene matrix was then converted to a Seurat 
object using the snapATAC function snapToSeurat. Defining transfer 
anchors and alignment of scATAC–seq and scRNA-seq data was then 
performed as described previously19.

Generation of accessibility heat maps
Accessibility heat maps (for cardinal-class-specific regions and com-
parison of proximal vs distal elements) were generated using bedtools 
computeMatrix and plotHeatmap. Reference files were bed files of 
peaks exclusively called within the given cardinal class. For comparison 
of proximal and distal elements, proximal elements were defined as 
those regions falling within gene bodies or promoter regions (tran-
scription start site (TSS) ±2 kb), whereas distal elements comprised 
everything outside these regions.

Motif enrichment analysis
Transcription factor motif enrichment analysis was performed on 
appropriate bed files using Homer39 with the following parameters: 
findMotifsGenome.pl input.bed mm10 output -size 200 -len 8. For 
identification of branch-specific transcription factors, the intersection 
was found between motifs significantly enriched in only one branch 
(within branch-exclusive loci) and for which the corresponding tran-
scription factor was differentially expressed within the same branch 
compared to the other two branches. In Fig. 2, motif enrichment is 
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quantified as the percentage enriched, normalized to the enrichment 
of the top percentage enriched motif to account for differences in the 
overall number accessible of peaks across developmental datasets.

Mef2c CUT&RUN library preparation
Nuclear isolation was performed as described previously32. The neo-
cortex was dissected from adult Pvcre;INTACT and Sstcre;INTACT mice 
in ice-cold buffer HB (0.25 M sucrose, 25 mM KCl, 5 mM MgCl2, 20 mM 
Tricine-KOH pH 7.8, 1 mM DTT, 0.15 mM spermine, 0.5 mM spermidine, 
1X cOmpleteTM, EDTA-free Protease Inhibitor Cocktail (Sigma) and 
10 mM sodium butyrate). Cortices were homogenized by a Dounce 
homogenizer in the presence of 0.3% IGEPAL. The homogenate was 
then filtered through a 30 µm MACS SmartStrainer (Miltenyi Biotec), 
mixed with working solution (5 volume of OptiPrep + 1 volume of Dilu-
ent (150 mM KCl, 30 mM MgCl2 and 120 mM Tricine-KOH pH 7.8)) at a 
1:1 ratio, and underlaid with 30% and 40% gradient solution (working 
solution diluted by buffer HB). Following ultracentrifugation at 10,000g 
for 18 min at 4 °C, nuclei were collected from the interface of 30% and 
40% layers and then resuspended in FACS buffer (1X PBS, 1% BSA, 1X 
Protease Inhibitor Cocktail and 10 mM sodium butyrate) for sorting 
GFP-positive nuclei on a Sony SH800S sorter.

CUT&RUN sequencing on sorted nuclei was performed as described 
previously40. Nuclei were resuspended in CUT&RUN wash buffer (20 
mM HEPES pH 7.5, 150 mM NaCl, 0.2% Tween 20, 1 mg ml−1 BSA, 0.5 mM 
spermidine, 1X protease inhibitor cocktail, and 10 mM sodium butyrate) 
and captured with Concanavalin A beads (Bangs Laboratories) at room 
temperature for 10 min. Bead-bound nuclei were then incubated with 
MEF2C antibody (182901-AP, Proteintech, 1:100) in antibody buffer 
(CUT&RUN wash buffer, 0.1% Triton X-100, and 2 mM EDTA) overnight 
at 4 °C. The next day, beads were washed twice with antibody buffer 
and then incubated with pA-MNase (0.7 µg ml−1) in antibody buffer at 
4 °C for 1 h. After two washes with Triton wash buffer (CUT&RUN wash 
buffer and 0.1% Triton X-100), tethered cleavage was induced by the 
addition of CaCl2 at a final concentration of 3 mM on ice for 30 min. To 
release the protein–DNA complex, nuclei were combined with 2X STOP 
solution (340 mM NaCl, 20 mM EDTA, 4 mM EGTA, 0.04% Triton X-100 
and 50 µg ml−1 RNase A) at a 1:1 ratio and incubated at 37 °C for 20 min. 
Solubilized chromatin was separated from bead-bound nuclei on a 
magnetic rack, supplemented with 0.1% SDS, and then digested with 
0.2 mg ml−1 Proteinase K at 65 °C for 1 h. Released DNA was extracted 
with phenol chloroform. CUT&RUN libraries were constructed using 
NEBNext Ultra II DNA Library Prep Kit as described previously41. Librar-
ies with different barcodes were pooled and sequenced on NextSeq 
with NextSeq 500/550 High Output Kit v2 (75 cycles), generating 7–14 
million paired-end 42-bp reads per sample.

Mef2c CUT&RUN data processing and analysis
CUT&RUN data were processed as described previously42. In brief, 
paired-end reads were trimmed with Trimmomatic to remove adaptor 
sequences. Trimmed reads were then aligned to the mm10 genome 
using Bowtie2 with the –dovetail setting enabled. PCR duplicates, mul-
tiple mapped reads and reads overlapping with the blacklist regions 
were excluded from downstream analyses. To ensure all libraries were 
compared at the same read depth, BAM files were downsampled to 8.5 
million reads before peak calling. For each sample, peaks were called 
and bigwig files were generated using MACS2 (-f BAMPE -g mm -q 0.05 
-B) (v.2.2.7.1; https://github.com/taoliu/MACS). Because the majority 
of CUT&RUN peaks overlapped with scATAC–seq peaks, scATAC–seq 
coaccessibility data was used to assign peaks to gene promoters. For 
this, the Cicero package43 was used to generate co-accessibility scores 
(conns) for each peak as described previously for P28 V1 scATAC–seq 
data. The resulting table was then filtered for those containing peaks 
falling within promoter regions (within 2 kb of a TSS), then for those 
connections with a co-accessibility score greater than 0.2. Finally, 
the peaks fitting these criteria were filtered for those overlapping 

with CUT&RUN peaks. Finally, genes associated with the promoters 
co-accessible with these peaks were used for downstream analysis 
(comparison of number of genes associated, gene ontology). Gene 
ontology analysis was performed using ClusterProfiler (https://github.
com/YuLab-SMU/clusterProfiler).

Gene regulatory network inference
Gene regulatory network inference was performed using a previously 
described multitask learning algorithm25 implemented in the infer-
elator pipeline (https://github.com/flatironinstitute/inferelator)44. 
In brief, cellular gene expression (in matrix form, dimensions cells 
by genes) was represented as a linear multiplication between a tran-
scription factor activity matrix (in matrix form, dimensions cells by 
transcription factors) and the gene regulatory network linking genes 
to transcription factors (in matrix form, dimensions transcription 
factor by genes). First, a prior structure of the gene regulatory net-
work was calculated by using chromatin information to identify the 
transcription-factor binding motif and link transcription factors to 
nearby genes (inferelator-prior; http://github.com/flatironinstitute/
inferelator-prior). Next, the transcription factor activity matrix was 
computed by inverting the linear system, using the already computed 
prior network matrix. Finally, gene expression and the activity matrix 
were fed into the multitask learning pipeline. Gene regulatory networks 
are displayed by using jp-gene-viz (https://github.com/simonsfounda-
tion/jp_gene_viz). To simulate Mef2c KO expression data, we set to zero 
the Mef2c value in the transcription factor activity matrix and then 
multiplied this matrix by the gene regulatory network. These simulated 
expression values were then processed through the regular RNA-seq 
processing pipeline. Scripts for analysis are available at https://github.
com/marianogabitto/ChromatinDynamics2020-Analysis.

Mef2c cKO RNA-seq data processing
Single-cell RNA-seq datasets collected from the cortex of wild-type 
mice at E18 and P2, and from Mef2c conditional knockout mice at P2 
(P2Mef2c-KO), were aligned by different methods (Seurat, Conos; using 
default parameters), with both algorithms displaying similar results. 
The results shown in Fig. 4 represent Seurat alignment after regular 
pre-processing.

Mef2c cKO ATAC–seq data processing
The P2 scATAC-seq data from Mef2c cKO mice was processed to generate 
a SnapATAC object and the cluster the cells as described above. Clusters 
were assigned to the PV or SST cardinal class on the basis of the acces-
sibility of marker genes for either class. Peaks were then called for each 
class using ChromA38. HOMER analysis was performed as described 
above to annotate peaks containing a Mef2c motif for comparison to 
E18 and P2 wild-type datasets. The overlap of peaks across datasets or 
cell types was determined using bedtools jaccard.

Mef2c in silico cKO prediction
The P2-Mef2c-simKO dataset reconstructed from our network inference 
algorithm (equation 1) was computed in the following way.

X β A= kTFs k̂jij ik

First, we modelled the expression X of a gene i in a sample j (Xij) as 
the weighted sum of the activities of each transcription factor k at 
sample j (Ak,j). Magnitude and direction (activation or repression) of 
a regulatory interaction (β) between transcription factor k and gene i 
were learned by solving for β. Next, in the A matrix, Mef2c activity was 
zeroed for every cell (A*). Finally, the P2-Mef2c-simKO reconstructed 
gene expression (X*) matrix was calculated by multiplying β by A*. To 
calculate knock-out transcription-factor activity, we solved equation 1 
by inverting the relationship between the network and the transcription 
factor activity (Â = βprior

−1 XMef2c-cKO). In this case, we used gene expression 
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values belonging to P2-Mef2c-cKO dataset and the network was our 
prior network computed from the P2 WT dataset. log fold change was 
then computed between P2-Mef2c-WT and P2-Mef2c-cKO. For this analy-
sis, PV and SST cells were grouped together and the perturbation was 
performed on the population as a whole, and compared to the entire 
true KO and WT datasets containing both PV and SST cells.

In order to predict targets of MEF2C, genes with edges connected directly 
to MEF2C were considered direct targets. Of these, 17 were transcription 
factors. Genes connected to these 17 transcription factors were considered 
indirect targets of MEF2C. To determine the validity of these predicted 
targets, they were compared to experimental Mef2c cKO scRNA-seq data 
compared to both whole single-cell (WTwc) and single-nuclear (WTnuc) 
wild-type scRNA-seq data. Both comparisons were considered because the 
whole-cell WT dataset was used to compute the GRN, but the cKO dataset 
was collected using single nuclei and we therefore wanted to ensure that 
differentially expressed genes were not a result of comparing whole cell 
to nuclear data. To that end, Batchelor and scran were used to preproc-
ess and compute batch-corrected expression matrices. Two alignments 
were then computed : WTwc and cKO (WTK); WTnuc and cKO (WTNK). 
Each alignment were preprocessed with multiBatchNorm using the genes 
intersection between each dataset pair, and corrected expression gener-
ated with fastMNN. The average corrected expression by condition was 
then computed. Fold change of average corrected expression was then 
computed using the following formula : FC = (A−B)/B. We then scored 
each of direct and indirect MEF2C targets identified in the P2 GRN, and 
considered our prediction accurate if the fold change was ≥0.5 or ≤−0.25.

Statistics
No statistical methods were used to predetermine sample sizes. Cluster-
ing of scRNA-seq and scATAC–seq data was performed in an unbiased 
manner. For motif analysis, a P value of less than 0.01 was considered 
significant. A non-parametric Wilcoxon rank-sum test was used to find 
differentially expressed genes between clusters or cell types within 
scRNA-seq datasets. For scATAC–seq datasets, ChromA was used to call 
peaks within each dataset as described above and peaks called exclu-
sively within a dataset were used to define mutually exclusive peaks.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data Availability
All sequencing data produced for this study are available at the Gene 
Expression Omnibus (GEO) at accession number GSE165233.

Code Availability
The ChromA package, used for peak calling in all scATAC–seq data-
sets, is available at https://github.com/marianogabitto/ChromA. The 
CellRanger and CellRanger ATAC pipelines, used for preprocessing 
of scRNA-seq and scATAC–seq libraries, respectively, are available 
at https://support.10xgenomics.com/single-cell-gene-expression/

software/downloads/latest and https://support.10xgenomics.com/
single-cell-atac/software/downloads/latest. The snapATAC package, 
used for downstream analysis of scATAC–seq datasets, is available at 
https://github.com/r3fang/SnapATAC. The Seurat package, used for 
scRNA-seq analysis and integration of scRNA-seq and scATAC–seq 
datasets, is available at https://github.com/satijalab/seurat. Scripts 
for analysis are available at https://github.com/marianogabitto/Chro-
matinDynamics2020-Analysis.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Quality control of embryonic scRNA-seq samples and 
mitotic versus postmitotic discrimination. a, Number of cells in Dlx6a− and 
Dlx6a+ scRNA-seq datasets collected from E13 MGE in Dlx6a-Cre;Ai9 mice and 
multiome dataset in E13 MGE wild type mice. b, Mean reads per cell in Dlx6a−, 
Dlx6a+ and multiome scRNA-seq datasets. c, Median genes detected per cell in 
Dlx6a−, Dlx6a+ and multiome scRNA-seq datasets. d, Fraction of cells scored to 
be in G2/M or S phase of the cycle cycle at each maturation score. Blue line 
indicates cells from the Dlx6− dataset, red line indicates cells from the Dlx6+ 
dataset. e, Diffusion map of E13 Dlx6a− and Dlx6a+ MGE scRNA-seq data color-
coded by assignment to a mitotic (red) or postmitotic (blue) state.  

f, Percentage of cycling cells as a function of the position along the maturation 
trajectory color-coded by assignment to a mitotic (red) or postmitotic (blue) 
state in E13 Dlx6a− and Dlx6a+ MGE scRNA-seq datasets. g, Diffusion map of 
E13 multiome MGE scRNA-seq data color-coded by assignment to a mitotic 
(red) or postmitotic (blue) state. h, Percentage of cycling cells as a function of 
the position along the maturation trajectory color-coded by assignment to a 
mitotic (red) or postmitotic (blue) state in E13 multiome MGE scRNA-seq 
dataset. i, Line plots indicating the promoter accessibility (blue) and gene 
expression (red) for six developmentally-regulated genes.
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Extended Data Fig. 2 | Developmental characterization of embryonic E13 
MGE cells surveyed using scRNA-seq, scATAC-seq, and multiomic methods. 
a, Analysis of Dlx6a−, Dlx6a+ and multiome scRNA-seq datasets collected from 
E13 MGE in Dlx6a−Cre;Ai9 mice and multiome dataset in E13 MGE wild type 
mice. b, Analysis of Dlx6a−, Dlx6a+ and multiome scATAC-seq datasets 
collected from E13 MGE in Dlx6a−Cre;Ai9 mice and multiome dataset in E13 
MGE wild type mice. i, Dlx6+/− FAC-sorted and multiome cells. ii, Unbiased 

cluster annotation. iii, Dlx6+ and Dlx6− annotation. iv, Cell cycling phase 
annotation. v, Pseudotime annotation. vi, Mitotic and postmitotic cell 
annotation. In ii-vi, Annotations are performed on scRNA-seq datasets and 
transferred to scATAC-seq datasets through the multiome dataset. scRNA- and 
scATAC-seq low dimensional representation reflects UMAP embedding. vii, 
Average gene expression and promoter accessibility for unbiased clusters.



Extended Data Fig. 3 | Orthogonal maturation trajectory methods reveal 
branching fates in postmitotic MGE cells at E13. a, Palantir Analysis of 
Analysis of Dlx6a−, Dlx6a+ and multiome scRNA-seq postmitotic cells. b, UMAP 
Analysis of Analysis of Dlx6a−, Dlx6a+ and multiome scRNA-seq postmitotic 
cells. c, Diffusion Maps Analysis of Analysis of Dlx6a−, Dlx6a+ and multiome 
scRNA-seq postmitotic cells. For a, b, c:i, Unbiased clustering annotation. 
 ii, Branch trajectories color-coded by slingshot pseudotime. iii, Gene 

expression for mitotic marker (Fabp7) and branch-specific marker (Zic1, Meis2, 
Maf). iv, For Palantir, cells are color coded by Palatir Pseudotime or 
Differentiation Potential. d, Confusion matrix reveals agreement of branch 
labels between different trajectory methods. e, TFs with binding motif highly 
enriched in a branch specific manner. f, Average gene expression across 
branches for TFs in e.
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Extended Data Fig. 4 | Chromatin accessibility precedes gene expression in 
branch 1- specific genes. a, Heat map depicting gene expression, Promoter 
and distal elements accessibility throughout branch 1 pseudotime for loci +/− 
500kb around six branch 1 - specific genes. Distal elements are selected based 
on the relevance for classifying branch 1 cells. For each gene, row 1 shows gene 
expression, row 2 promoter accessibility, row 3 aggregated accessibility and 
the remaining rows are distal branch 1 classifying elements. Each trace has been 

smoothed using the lowess function in R. b, Gene expression, Promoter and 
Aggregated accessibility throughout branch 1 pseudotime for 10 branch  
1 - specific genes. c, Only postmitotic cells are classified as branch neurons by 
supervised classification methods. c−i) Classification of E13 cells into mitotic 
or postmitotic cells based on cell cycle RNA score. c−ii) Classification of E13 
cells into mitotic or branch 1,2,3 lineages based on chromatin accessibility.



Extended Data Fig. 5 | Analysis of MGE-derived cortical interneuron 
scRNA-seq datasets from E18 through P28. a−d, UMAP showing individual 
scRNA-seq datasets from Dlx6a+ labeled cortical neurons, subsetted for PV+ 
and SST+ interneurons, collected at E18 (a), P2 (b), P10 (c), and P28 (d). Left 
UMAP in each panel is color-coded by cluster identity (individually determined 
for each dataset). Right UMAP in each panel is color-coded by cardinal class. 
Bottom right UMAP in (c) and (d) is color-coded by cortical region of origin 
(anterior lateral motor cortex - ALM, primary visual cortex - V1). In (d), the 

right-most boxes show each cluster linked to its subtype identity, determined 
by expression of marker genes. e, Integration of E18, P2, P10, and P28 
scRNA-seq datasets using Seurat CCA. Left UMAP is color-coded by timepoint, 
right is color-coded by cardinal class. f, Prediction score indicating the 
confidence of label transfer between each timepoint. Cluster labels were 
transferred from P2 to E18 (top), from P10 to P2 (middle) and from P28 and P10 
(bottom). Label transfer prediction scores were lowest between P10 and P2 
timepoints.
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Extended Data Fig. 6 | Analysis of MGE-derived interneuron scATAC-seq 
datasets from E18 through P28. a−d, UMAP showing individual scATAC-seq 
datasets from Dlx6a+ labeled cortical neurons, subsetted for PV+ and SST+ 
interneurons, collected at E18 (a), P2 (b), P10 (c), and P28 (d). Left UMAP in each 
panel is color-coded by cluster identity (individually determined for each 
dataset). Top right of each panel shows gene body accessibility of Gad2 
(interneuron marker gene), Lhx6 (MGE-derived interneuron marker gene), Tac1 
or PV (PV cIN marker gene), and Sst (SST cIN marker gene). Bottom right UMAP 
in each panel is color-coded by cardinal class, determined by accessibility of 
cardinal-class specific loci (identified at P28) and confirmed by marker gene 

accessibility. See methods for more information on cardinal class assignment 
in ATAC-seq data. Additional bottom right UMAP in (c) and (d) is color-coded by 
cortical region of origin (anterior lateral motor cortex - ALM, primary visual 
cortex - V1). e, Integration of E18, P2, P10, and P28 scATAC-seq datasets using 
Seurat CCA. Left UMAP is color-coded by timepoint, right is color-coded by 
cardinal class. f, Prediction score indicating the confidence of label transfer 
between each timepoint. Cluster labels were transferred from P2 to E18 (top), 
from P10 to P2 (middle) and from P28 and P10 (bottom). Label transfer 
prediction scores progressively increased over developmental time.



Extended Data Fig. 7 | Integration of MGE-derived interneuron scRNA-and 
scATAC-seq datasets. a−d, UMAPs showing scRNA- and scATAC-seq datasets 
integrated using Seurat CCA at E18 (a), P2 (b), P10 (c), and P28 (d). Top panel 
shows UMAP color-coded by RNA-seq cluster identity - i.e., the labels used for 
label transfer and calculation of prediction scores in Figure 2a–d. Bottom panel 
UMAP is color-coded by cardinal class identity. e−h, UMAPs showing scRNA- 

and scATAC-seq datasets integrated using CONOS E18 (e), P2 (f), P10 (g), and 
P28 (h). Top panel shows UMAP color-coded by dataset of origin (RNA or ATAC). 
Bottom panel UMAP is color-coded by cardinal class identity. Cells from RNA 
and ATAC datasets integrated relatively well at later developmental 
timepoints, but were mostly segregated at earlier timepoints (E18, P2).
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Extended Data Fig. 8 | Distally located loci open in specific cardinal classes 
earlier in development than proximal elements. a, Average signal (top) and 
signal at each locus (bottom) for peaks specifically called for PV cells at P28 
that are within promoters or gene bodies (i.e., proximal elements). Promoter 
regions were defined as TSS+2 kb upstream. Signal within PV and SST cells at 
P28, P10, P2, and E18 are shown over a window 5 kb up- and down-stream of peak 
center (compare to Figure 2f, which zooms in to a 1 kb +/− window). b, Average 
signal (top) and signal at each locus (bottom) for peaks specifically called for PV 

cells at P28 that are distally located at each timepoint. c, Average signal (top) 
and signal at each locus (bottom) for peaks specifically called for SST cells at 
P28 that are within promoters or gene bodies (proximal) at each timepoint.  
d, Average signal (top) and signal at each locus (bottom) for peaks specifically 
called for SST cells at P28 that are distally located at each timepoint. e, Top five 
enriched motifs for P28 PV-specific proximal peaks. f, Top five enriched motifs 
for P28 PV-specific distal peaks. g, Top five enriched motifs for P28 SST-specific 
proximal peaks. h, Top five enriched motifs for P28 SST-specific distal peaks.



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | MEF2C CUT&RUN in PV and SST interneurons at P28. 
a, Number of peaks called in each CUT&RUN replicate from PV (blue) and SST 
(red) cells, and the number of peaks present in both replicates from each cell 
type (intersect). b, Percentage of peaks containing a canonical Mef2c motif in 
each replicate. c, Significance (-log p-value) of enrichment of Mef2c motif in 
each replicate. d, The distribution of CUT&RUN peaks that were also present in 
P28 ATAC peak sets containing MEF2C motifs. For this analysis, the CUT&RUN 
replicate intersect peak sets of PV and SST were subsetted for those peaks that 
were also present in the ATAC peaks called for each cell type at P28 and found to 
contain a canonical MEF2C motif. Of those, they were categorized for those 
that were present in both PV and SST ATAC peak sets or unique to one cell type. 
e, Compares peaks identified in CUT&RUN (orange) or jointly in CUT & RUN and 
ATAC-seq analyses (green). ATAC-seq peaks used in this analysis were those 

identified in each cell type at P28 regardless of presence or absence of a 
canonical Mef2c motif. Compare with Fig. 2j which performs the same analysis 
but only includes ATAC peaks with a Mef2c motif. f, g, HOMER results for 
de novo motif discovery in replicate intersect peak sets for PV and SST cINs. 
h, Genomic location of each CUT&RUN peak in replicate intersect peak sets for 
PV and SST cINs. i, Integrative Genomics Viewer (IGV) snapshots showing 
bigwig files for each CUT&RUN replicate and associated peaks called in both 
replicates (intersect) for PV and SST cINs. Genomic loci shows are examples of 
genes with nearby peaks for commonly expressed genes (Rbfox1, Grin2a) and 
PV-enriched genes (Erbb4, Pthlh, Plxcd3). j and k, Gene Ontology (GO) term 
analysis. Each CUT&peak was associated with the nearest gene TSS. These lists 
of genes for PV and SST cells were then used as input for GO term analysis, 
revealing an enrichment of genes associated with synapse development.



Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Single-cell RNA- and ATAC-seq analysis of Mef2c 
cKO interneurons compared to wild-type (WT) cells at P2. a, UMAP of P2 WT 
snRNA-seq and P2 Mef2c cKO snRNA-seq data integrated using Seurat and 
color-coded by cluster identity. WT dataset here was prepared using single 
nuclei to match cKO rather than the whole cell dataset (see Fig. 4). b, UMAP in 
(a) segregated according to timepoint and color-coded by cell type. c, Cluster 
composition delineated by (i) marker gene expression (ii) cell type (iii) cell 
number. Compare a–c here with Fig. 4 a–c — this figure contains single nucleus 
data for both WT and cKO while Fig 4 WT data is whole cell. d, UMAP of Mef2c 
cKO and WT cells color-coded by cluster. e, UMAP of Mef2c cKO and WT cells 

color-coded by genotype. f, UMAP of Mef2c cKO and WT cells color-coded by 
cardinal class identity. Mef2c cKO identity was determined by the accessibility 
of marker genes (see d) and assignment of clusters to the appropriate cardinal 
class. g, Gene body accessibility of SST and PV cIN marker genes (SST: Sst, 
Grin3a, Elfn1, Cacng3, Grm1, Satb1, Tmem91. PV: Tac1, Erbb4). h, Pie chart 
representation of scATAC-seq data showing the total number of peaks in E18 
WT, P2 WT, and P2 Mef2c cKO, subdivided into peaks that are PV or SST cell 
specific or shared across both cell types. Compare to Figure 4d, which shows 
similar pie charts but only for peaks with Mef2c motifs.
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for the collection of data.

Data analysis The ChromA package, used for peak calling in all scATAC-seq datasets, is available at https://github.com/marianogabitto/ChromA. The 
CellRanger and CellRanger ATAC pipelines, used for preprocessing of scRNA- and scATAC-seq libraries, respectively, are available at 
https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest and https://support.10xgenomics.com/single-
cell-atac/software/downloads/latest. The snapATAC package, used for downstream analysis of scATAC-seq datasets, is available at 
https://github.com/r3fang/SnapATAC. The Seurat package, used for scRNA-seq analysis and integration of scRNA- and scATAC-seq 
datasets, is available at https://github.com/satijalab/seurat. All in-house scripts for analysis are available at https://github.com/
marianogabitto/ChromatinDynamics2020-Analysis .

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All sequencing data produced for this study are available at the Gene Expression Omnibus (GEO) at GEO accession number GSE165233. E18 scRNA-seq data is 
available from GEO under the accession number GSE104158. P28 V1 scATAC-seq data is available from GEO under accession number GSE152449.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample sizes. 

Data exclusions The focus of this study was to investigate cortical interneuron development. Therefore, when small numbers of contaminating cells (i.e. 
excitatory neurons (Slc17a7+), or other small, Gad1/2 negative populations) were identified within single-cell RNA or ATAC-seq datasets, these 
were excluded from further analysis.

Replication See supplementary table 1 for list of RNA- and ATAC- datasets; for MGE E13,  two  replicates each for E13 MGE progenitors (Dlx6-) and 
postmitotic cells (Dlx6-) were collected from Dlx6a-Cre;Ai14 mice. For CUT&RUN experiments, two replicates were collected for each PV and 
SST cells. Results were confirmed to be highly consistent across datasets.

Randomization Not relevant to this study.

Blinding Not relevant to this study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals See 'Mouse lines' sections of methods for full details. Mouse lines used include: CD-1 (Charles River  #022), Dlx6a-Cre (Jax stock 
#008199), Ai9 (Jax stock #007909), Ai14 (Jax stock #007914),  INTACT (Jax stock #021039), Lhx6-iCre (Jax stock #026555), and  
floxed-Mef2c (Jax stock #025556). Mice were used at the following ages as outlined in the results and methods: E13.5, E14.5, 
E18.5, P2, P10, P28.

Wild animals This study did not involve wild animals.

Field-collected samples This study did not involve samples collected from the field.

Ethics oversight All mouse colonies were maintained in accordance with protocols approved by the Institutional Animal Care and Use 
Committees at Harvard Medical School and the Broad Institute of MIT and Harvard. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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